Summing Up

Bivariate Regression I: Conceptual Overview and Estimation

Dr. Michael Fix mfix@gsu.edu

Georgia State University

2 February 2023

Note: The slides are distributed for use by students in POLS 8810. Please do not reproduce or redistribute these slides to others without express permission from Dr. Fix.

Summing Up

Fundamentals of Regression

- Regression involves the relationship between two (or more) variables:
 - The dependent variable (regressand/response): Y
 - The independent variable (regressor/factor): X
- Graphically, we can represent this with a scatter plot:

Summing Up

Fundamentals of Regression

- Intuitively, we see a line that can be drawn
- How do we get the best line?

Fundamentals of Regression Least Squares

- The goal is to find a predicted value for Y represented by \hat{Y}
- We want to find a line with the basic formula: $\hat{Y} = a + bX$
- Our goal is a line that is the closest to all of the points
- To do this we want to minimize deviation: $d = Y \hat{Y}$
- Sum this to get the whole and use the square to remove the problem of negatives:

$$\sum d^2 = \sum (Y - \bar{Y})^2 \tag{1}$$

• This method is known as Ordinary Least Squares (OLS)

OLS Mechanics

OLS in R 00000 Summing Up

Fundamentals of Regression

Least Squares

• Conceptually we can represent this in graphical form.

OLS in R 00000 Summing Up

Formula for Regression Line

• We need to find the formula for the line that minimizes the sum of squared errors

$$\hat{Y} = a + bX \tag{2}$$

- *b* indicates the slope of the line
 - This value provides substantive information
 - The change in Y for each unit increase in X
- a indicates the y-intercept of the line
 - This is the value of Y when X = 0

OLS in R 00000 Summing Up

Computing OLS Estimates

• *b* can be calculated from the deviations of *X* and *Y* from their respective means:

$$b = \frac{\sum (X - \bar{X})(Y - \bar{Y})}{\sum (X - \bar{X})^2}$$
(3)

• *a* is found by solving equation (2) to get:

$$a = \bar{Y} - b\bar{X} \tag{4}$$

Computing OLS Estimates in R

- OLS is computationally simple enough that in the bivariate case, with a small N, we can hand calculate our estimates
- However, we do not generally do this as it is inefficient and doesn't scale up well

undamentals	OLS Mechanics	OLS in R o●ooo	Summing Up
•••			
### Load r # Use inst library(ti library(st	ecessary packages call.packages() if you do not idyverse) # Data manipulation cargazer) # Creates nice regr	have this package ession output tables	
### Load y # We are u my_data <-	rour data ising V-Dem version 12 - readRDS("data/vdem12.rds")		
# Let's ch my_data <- rename(c	ange names of some of these - my_data > Jemocracy = v2x_polyarchy, gd	variables for the sake of p_per_capita = e_gdppc)	simplicity
### Run a # We are o # Always o ?lm help(lm)	bivariate OLS going to use lm() function (w check function help page!	hich means linear model).	
# Here is # lm(deper # ~ => thi	how you specify your variabl dent_variable ~ independent_ is is tilda	es: variable(s), data = your_	_data)
# For exam lm(democra	nple: acy ~ gdp_per_capita, data =	my_data)	

OLS Mechanics

OLS in R

Summing Up

Regression Output

•••

```
lm(democracy ~ gdp_per_capita, data = my_data)
```

This produces very little info, so we save this output as a list object and then examine it:

```
my_lm <- lm(democracy ~ gdp_per_capita, data = my_data) # creates a list object called my_lm</pre>
```

summary(my_lm) # gives more detailed output

<pre>> # For example: > lm(democracy ~ gdp_per_capita, data = my_data)</pre>				
Call: lm(formula = democracy ~ gdp_per_capita, data = my_data)				
Coefficients: (Intercept) gdp_per_capita 0.2158 0.0117				
<pre>> summary(my_lm) # gives more detailed output</pre>				
Call: lm(formula = democracy ~ gdp_per_capita, data = my_data)				
Residuals: Min 1Q Median 3Q Max -2.03380 -0.16797 -0.05647 0.14826 0.58390				
Coefficients: Estimate Std. Error t value Pr(> t) (Intercept) 0.2158381 0.0018741 115.17 <2e-16 *** gdp_per_capita 0.0117026 0.0001469 79.68 <2e-16 ***				
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1				
Residual standard error: 0.2348 on 21377 degrees of freedom (6001 observations deleted due to missingness) Multiple R-squared: 0.229, Adjusted R-squared: 0.229 F-statistic: 6349 on 1 and 21377 DF, p-value: < 2.2e-16				

Better Regression Output using stargazer()

•••

```
### Stargazer package ----
# Let's create better looking output using stargazer function
stargazer(my_lm, type = "text") # Change type to latex if you're importing to LaTeX
# Let's make it much better and export it to latex!
stargazer(my_lm,
        type = "latex",
        title = "The relationship between democracy and GDP per capita",
        covariate.labels = c("GDP per capita"),
        dep.var.labels = c("Electoral Democracy Index"),
        ci.level = 0.95,
        star.cutoffs = c(0.05),
        notes.align = "l",
        notes.alpend = FALSE,
        notes.label = "Notes",
        notes.label = "Notes",
        notes = "*p < 0.05. Standard errors are in parentheses.")</pre>
```

Better Regression Output using stargazer()

Table 1: The relationship between democracy and GDP per capita

	Dependent variable:		
	Electoral Democracy Index		
GDP per capita	0.012^{*}		
	(0.0001)		
Constant	0.216^{*}		
	(0.002)		
Observations	21,379		
\mathbf{R}^2	0.229		
Adjusted R ²	0.229		
Residual Std. Error	$0.235 \ (df = 21377)$		
F Statistic	$6,349.082^*$ (df = 1; 21377)		

Notes

 $^{\ast}p < 0.05.$ Standard errors are in parentheses.

OLS Mechanic

OLS in R

Summing Up

Why regression?

	Description	Explanation	Prediction
Task	Summarize data	Correlation/causation	Forecast OOS / future data
Emphasis	Data	Theory / Hypotheses	Outcomes
Focus	Univariate	Multivariate	Multivariate
Typical Application	Summarize / "reduce" data	Discuss marginal associations between predictors and an outcome of interest	Optimize out-of- sample predictive power / minimize prediction error

OLS in R 00000 Summing Up

Where Do We Go From Here?

- How to use OLS for hypothesis testing
- Assumptions of the OLS Estimator
- Model fit
- Beyond the bivariate case

OLS Mechanics

OLS in R 00000 Summing Up

What Won't We Do?

- Multiple Regression
- Measurement models
- Time series
- Machine Learning