Dichotomous Predictors, Non-Linearity, and Data Transformations

Dr. Michael Fix
mfix@gsu.edu

Georgia State University
23 February 2023

Note: The slides are distributed for use by students in POLS 8810. Please do not reproduce or redistribute these slides to others without express permission from Dr. Fix.

Variable Types Revisited

- Four types of variables:

1. Nominal ("Factors")
2. Ordinal
3. Interval
4. Ratio

- In the context of OLS: Which work as DVs? Which work as IVs?

Dummy Variables

- A term that gets used a lot to mean many things...
- Naturally dichotomous things
- Simplified categorizations
- "Factor" variables
- Ordinal variables (treated as "factors")

Dummy Variable Coding

- The term "dummy" variable is associate with a $\{0,1\}$ coding scale
- e.g.

$$
\text { woman }=\left\{\begin{array}{l}
0 \text { if man } \\
1 \text { if woman }
\end{array}\right.
$$

- Why $\{0,1\}$?

Dummy Variable Coding

- Two reasons:

1. Math (will talk about this in a minute)
2. Software

- Theoretically, as this variables have no meaningful ordering among their values, the assigned numbers do not matter
- However, you should always name the variable to correspond outcome of interest and set that outcome equal to 1 .

Bivariate Regression with Dichotomous X s

The Math

- For

$$
Y_{i}=\beta_{0}+\beta_{1} D_{i}+u_{i}
$$

- we have

$$
\mathrm{E}(Y \mid D=0)=\beta_{0}
$$

- and

$$
\mathrm{E}(Y \mid D=1)=\beta_{0}+\beta_{1} .
$$

Bivariate Regression with Dichotomous X s

The Intuition

- Intuitively, we think of OLS as "fitting a line"
- This breaks down with a dummy IV:

Bivariate Regression with Dichotomous Xs

The Intuition

Regression with Dichotomous and Continuous X

The Math

- For,

$$
Y_{i}=\beta_{0}+\beta_{1} D_{i}+\beta_{2} X_{i}+u_{i}
$$

- we have

$$
\mathrm{E}(Y \mid X, D=0)=\beta_{0}+\beta_{2} X_{i}
$$

- and

$$
\mathrm{E}(Y \mid X, D=1)=\left(\beta_{0}+\beta_{1}\right)+\beta_{2} X_{i}
$$

Regression with Dichotomous and Continuous X

The Intuition

Regression with Dichotomous and Continuous X

The Intuition

- As the prior slide shows, effectively the dummy variable represents an intercept shift.
- The estimated effect of X_{i} on $Y_{i}\left(\beta_{2}\right)$ determines the slope of the regression line and is unchanged based on the value of D_{i}.
- BUT, the intercept of the regression line shifts based on the value of D_{i}
- When $D_{i}=0$, the intercept is β_{0}
- When $D_{i}=1$, the intercept is $\left(\beta_{0}+\beta_{1}\right)$

Multiple Dummies

The Math

- For

$$
Y_{i}=\beta_{0}+\beta_{1} D_{1 i}+\beta_{2} D_{2 i}+\ldots+\beta_{\ell} D_{\ell i}+u_{i}
$$

- We have

$$
\mathrm{E}\left(Y \mid D_{k}=0\right) \forall k \in \ell=\beta_{0}
$$

- Otherwise,

$$
\mathrm{E}(Y)=\beta_{0}+\sum_{k=1}^{\ell} \beta_{k} \forall k \text { s.t. } D_{k}=1
$$

Multiple Dummies

An Important Note

- Where the D_{ℓ} are mutually exclusive and exhaustive:
- This is usually the case for so called "factor" variables
- The expected values are the same as the within-group means.
- Identification requires that we either
- omit a "reference category," or
- omit β_{0}.

Multiple Dummies

Ordinal Variables: A Special Case

- Suppose we have:

$$
\text { party }=\left\{\begin{array}{l}
-2=\text { Strong Democrat } \\
-1=\text { Weak Democrat } \\
0=\text { Independent } \\
1=\text { Weak Republican } \\
2=\text { Strong Republican }
\end{array}\right.
$$

Multiple Dummies

Ordinal Variables: A Special Case

- We could estimate:

$$
Y_{i}=\beta_{0}+\beta_{1}\left(\operatorname{party}_{i}\right)+u_{i}
$$

- Effectively treating an ordinal variable as if it was continuous

Multiple Dummies

Ordinal Variables: A Special Case

- Alternatively, we could convert it to a series of dummies

$$
\begin{gathered}
Y_{i}=\beta_{0}+\beta_{1}\left(\text { strongdem }_{i}\right)+\beta_{2}\left(\text { weakdem }_{i}\right)+ \\
\beta_{3}\left(\text { weakgop }_{i}\right)+\beta_{4}\left(\text { stronggop }_{i}\right)+u_{i}
\end{gathered}
$$

- Note the excluded "reference category" as the outcomes are mutually exclusive and exhaustive

Ordinal Variables: A Comparison

Why Transform Variables?

- Normality (of $u_{i} s$)
- Linearity
- Additivity
- Interpretation / Model Specification

Note: John Fox has some really helpful slides online that you might find useful for more depth on various transformations.

Monotonic Transformations

"Family of Powers and Roots"

Transformation	p	$f(X)$	Fox's $f(X)$
Cube	3	X^{3}	$\frac{x^{3}-1}{x^{3}}$
Square	2	X^{2}	$\frac{X^{2}-1}{2}$
(None/Identity)	(1)	(X)	(X)
Square Root	$\frac{1}{2}$	\sqrt{X}	$2(\sqrt{X}-1)$
Cube Root	$\frac{1}{3}$	$\sqrt[3]{X}$	$3(\sqrt[3]{X}-1)$
Log	0 (sort of)	$\ln (X)$	$\ln (X)$
Inverse Cube Root	$-\frac{1}{3}$	$\frac{1}{\sqrt[3]{X}}$	$\frac{\left(\frac{1}{\sqrt[3]{x}-1}\right)}{-\frac{1}{3}}$
Inverse Square Root	$-\frac{1}{2}$	$\frac{1}{\sqrt{X}}$	$\frac{\left(\frac{1}{\sqrt{x}}-1\right)}{-\frac{1}{2}}$
Inverse	-1	$\frac{1}{X}$	$\frac{\left(\frac{1}{x}-1\right)}{-1}$
Inverse Square	-2	$\frac{1}{X^{2}}$	$\frac{\left(\frac{1}{x^{2}}-1\right)}{\left(\frac{1}{2}\right.}$
Inverse Cube	-3	$\frac{1}{X^{3}}$	$\frac{\left(\frac{1}{x^{3}-1}\right)}{-3}$

A General Rule

Using higher-order power transformations (e.g. squares, cubes, etc.) "inflates" large values and "compresses" small ones; conversely, using lower-order power transformations (logs, etc.) "compresses" large values and "inflates" (or "expands") smaller ones.

Nonmonotonicity

Simple solution: Polynomials

- Second-order / quadratic:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+u_{i}
$$

- Third-order / cubic:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\beta_{3} X_{i}^{3}+u_{i}
$$

- pth-order:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\beta_{3} X_{i}^{3}+\ldots+\beta_{p} X_{i}^{p}+u_{i}
$$

How Do You Know?

Plots are your best friend!

How Do You Know? Toy Model Example

```
## Load your data ----
my_data <- readRDS("data/vdem12.rds")
# Let's change names of some of these variables for the sake of simplicity
# I am also subsetting it to only US
us_data <- my_data |>
    filter(country_name == "United States of America") |>
    rename(democracy = v2x_polyarchy,
    gdp_per_capita = e_gdppc,
    urbanization = e_miurbani,
    regime = v2x_regime,
    polarization = v2cacamps,
    polarization_ordinal = v2cacamps_ord) |>
    mutate(regime_binary = ifelse(regime %in% c(2,3), 1, 0),
    high_polarization = ifelse(polarization >= -1, 1, 0))
```

\# Use correlation matrix to see the relationship between variables
chart.Correlation(us_data |> select(democracy, gdp_per_capita, urbanization))
\# This is our toy model
multiple <- lm(democracy ~ gdp_per_capita + urbanization, data = us_data)
\# Use plot() to get diagnostics
plot(multiple)

First, check your variables

Model diagnostics using plot()

Residual distribution and density

density.default($x=$ resid(multiple))

$\mathrm{N}=201$ Bandwidth $=0.01364$

