Multicollinearity Broadly

Application in R 0000000

Collinearity

Dr. Michael Fix mfix@gsu.edu

Georgia State University

23 March 2023

Note: The slides are distributed for use by students in POLS 8810. Please do not reproduce or redistribute these slides to others without express permission from Dr. Fix.

Intro

Multicollinearity Broadly

Application in R 0000000

Under the Hood of **X**

OLS (and regression methods more generally) requires:

- X is full column rank.
- N > K.
- "Sufficient" variability in X.

Application in R 0000000

"Perfect" Multicollinearity

First a formal definition: There cannot be any set of λ s such that:

$$\lambda_0 \mathbf{1} + \lambda_1 \mathbf{X}_1 + \ldots + \lambda_K \mathbf{X}_K = \mathbf{0}$$

Multicollinearity Broadly

Application in R 0000000

A Toy Model

Let's see if there is a relationship between gas milage and car performance.

```
> data("mtcars")
> model1 <- lm(qsec ~ mpg, mtcars)</pre>
> summary(model1)
Call:
lm(formula = qsec ~ mpg, data = mtcars)
Residuals:
   Min
            10 Median
                            3Q
                                   Max
-2.8161 -1.0287 0.0954 0.8623 4.7149
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.35477 1.02978 14.911 2.05e-15 ***
            0.12414 0.04916 2.525 0.0171 *
mpg
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.65 on 30 degrees of freedom
Multiple R-squared: 0.1753, Adjusted R-squared: 0.1478
F-statistic: 6.377 on 1 and 30 DF, p-value: 0.01708
```

Multicollinearity Broadly

Application in R 0000000

A Toy Model

Now let's redo that using Kilograms/Liter instead of Miles/Gallon, but accidentally include both measures as predictor variables. What happens?

```
> mtcars$kgL <- mtcars$mpg * .425
> model2 <- lm(qsec ~ mpg + kgL, mtcars)</pre>
> summary(model2)
Call
lm(formula = qsec ~ mpg + kgL, data = mtcars)
Residuals:
    Min
            10 Median
                             30
                                    Max
-2.8161 -1.0287 0.0954 0.8623 4.7149
Coefficients: (1 not defined because of singularities)
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.35477 1.02978 14.911 2.05e-15 ***
            0.12414
mpg
                     0.04916
                                 2.525
                                         0.0171 *
                                    NA
                                             NA
kgL
                 NA
                            NA
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.65 on 30 degrees of freedom
Multiple R-squared: 0.1753, Adjusted R-squared: 0.1478
F-statistic: 6.377 on 1 and 30 DF, p-value: 0.01708
```


Application in R 0000000

What Does This Tell Us?

- 1. Perfect Multicollinearity is a very big problem (Theoretically)
- 2. Prefect Multicollinearity is NOT a problem at all (In Practice)

Perfect Multicollinearity

N > K

Multicollinearity Broadly

Application in R

N > K

- Statistically, if N < K, then:
 - We lack sufficient degrees of freedom to identify $\hat{oldsymbol{eta}}.^{*}$
 - $\hat{oldsymbol{eta}}$ is "overdetermined."
- Conceptually, N < K means that:
 - Our number of variables > Cases
 - Which means there can be no unique conclusion about explanatory / causal factors.

*Note: "identification" is used in statistics and econometrics to mean several different things, I am using it here in the most basic sense to mean that the parameters (here the $\hat{\beta}$ s) cannot be determined from the variables

Application in R 0000000

Another Toy Model

Let's subset the mtcars data to only look at lightweight cars and add some more predictor variables:

```
> rm(list=ls())
> data("mtcars")
> lightweight <- subset(mtcars. wt<2)</pre>
> model3 <- with(lightweight, lm(qsec ~ mpg + disp + hp))</pre>
> summary(model3)
Call:
lm(formula = qsec ~ mpg + disp + hp)
Residuals:
ALL 4 residuals are 0: no residual degrees of freedom!
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.54944
                            NaN
                                    NaN
                                              NaN
            -0.14716
                                    NaN
mpg
                            NaN
                                              NaN
          -0.25649
                                    NaN
                                              NaN
disp
                            NaN
            0.05502
                            NaN
                                    NaN
                                              NaN
hp
Residual standard error: NaN on O degrees of freedom
Multiple R-squared:
                         1,Adjusted R-squared:
                                                   NaN
F-statistic: NaN on 3 and 0 DF, p-value: NA
```


Application in R 0000000

What Does This Tell Us?

As with "perfect" multicollinearity, having N > Kwill result in a model specification that is impossible to estimate. Thus, you cannot violate this assumption in practice

Perfect	Multicollinearity
0000	

Intro 0 Multicollinearity Broadly

Application in R 0000000

Intuition

N > K

Multicollinearity Broadly

Application in R 0000000

High (Non-Perfect) Multicollinearity

Recall that

$$\widehat{\mathsf{Var}(\hat{oldsymbol{eta}})} = \hat{\sigma}^2 (\mathbf{X}'\mathbf{X})^{-1}$$

We can write the *k*th diagonal element of $(\mathbf{X}'\mathbf{X})^{-1}$ as:

$$rac{1}{({f X}_k^\prime {f X}_k)(1-\hat{R}_k^2)}$$

where \hat{R}_k^2 is the R^2 from the regression of \mathbf{X}_k on all the other variables in \mathbf{X} .

Multicollinearity Broadly

Application in R 0000000

High (Non-Perfect) Multicollinearity

Things to understand:

- 1. Multicollinearity is a *sample problem*.
- 2. Multicollinearity is a matter of *degree*.

Application in R 0000000

(Near-Perfect) Multicollinearity: Detection

- 1. High R^2 , but nonsignificant coefficients.
- 2. High pairwise correlations among independent variables.
- 3. High partial correlations among the Xs.
- 4. VIF and Tolerance.

Perfect Multicollinearity

N > K

Multicollinearity Broadly

Application in R 0000000

VIF / Tolerance

If $\hat{R}_k^2 = 0$, then

$$\widehat{\operatorname{Var}(\hat{eta}_k)} = rac{\hat{\sigma}^2}{\mathbf{X}'_k \mathbf{X}_k};$$

So:

$$\mathsf{VIF}_k = rac{1}{1-\hat{R}_k^2}$$

Tolerance $=rac{1}{\mathsf{VIF}_k}$

Rule of Thumb: VIF > 10 is a problem.

Multicollinearity Broadly

Application in R 0000000

What To Do?

Don't:

- Blindly drop covariates!!!
- Restrict *β*s...

Do:

- Add data.
- Transform the covariates
 - Data reduction
 - First differences
 - Orthogonalize

• Shrinkage / Regularization Methods

Toy Model

	Depende	nt variable:
	de	mocracy
	US sample (1)	Full sample (2)
gdp_per_capita	0.008	0.002 (0.0001)
	t = 15.551 p = 0.000***	t = 18.264 p = 0.000***
urbanization	$\begin{array}{c} 0.399\\ (0.158)\\ t = 2.521\\ n = 0.014^{**} \end{array}$	$\begin{array}{r} -0.016 \\ (0.004) \\ t = -3.716 \\ n = 0.0003*** \end{array}$
regime	p = 0.090 (0.009) t = 9.675 p = 0.000***	$\begin{array}{c} 0.228\\ (0.001)\\ t = 234.418\\ p = 0.000*** \end{array}$
Constant	0.161 (0.040) t = 4.027 p = 0.0002***	0.099 (0.002) t = 58.892 p = 0.000***
Observations R2 Adjusted R2	101 0.972 0.971	10,810 0.877 0.877
Residual Std. F Statistic	Error 0.027 (df = 97) 1,128.081*** (df = 3; 97)	0.095 (df = 10806) 25,701.890*** (df = 3; 10806)
Note:		*p<0.1; **p<0.05; ***p<0.01

Application in R

Correlation Matrix

Multicollinearity Broadly

Application in R

Correlation

cor.test(my_data\$democracy, my_data\$regime, use = "complete.obs", method = c("pearson"))

Variance Inflation Factor (VIF)

> # Variance Inf	lation Factor ((VIF)	
> # VIF value st	arts from 1		
> # A value of 1	indicates ther	e is no correlation	
> # A value between 1 and 5 indicates moderate correlation			
> # A value grea	ter than 5 indi	cates potentially s	severe correlation
<pre>> vif(us_model)</pre>			
gdp_per_capita	urbanization	regime	
5.023951	1.633371	6.213308	
<pre>> vif(my_model)</pre>			
gdp_per_capita	urbanization	regime	
1.446900	1.131696	1.297502	

N > K Multicollinearity Broadly

Application in R

First differences I

Taking the first difference ---us_data\$diff_regime <- us_data\$regime - lag(us_data\$regime, n = 1)</pre>

OR in tidy language
us_data <- us_data |>
mutate(diff_regime = regime - lag(regime, n = 1))

Multicollinearity Broadly

Application in R

First differences II

	Dependen	t variable:		
	dem	democracy		
	US Sample (1)	US Sample - First difference (2)		
gdp_per_capit	a 0.008 (0.001) p = 0.000 t = 15.551***	$\begin{array}{c} 0.012 \\ (0.0003) \\ p = 0.000 \\ t = 37.626^{***} \end{array}$		
urbanization	$\begin{array}{c} 0.399 \\ (0.158) \\ p = 0.014 \\ t = 2.521 ** \end{array}$	1.351 (0.185) p = 0.000 t = 7.313***		
regime	$\begin{array}{c} 0.090 \\ (0.009) \\ p = 0.000 \\ t = 9.675*** \end{array}$			
diff_regime		$\begin{array}{c} 0.007\\ (0.027)\\ p = 0.810\\ t = 0.242 \end{array}$		
Constant	0.161 (0.040) p = 0.0002 t = 4.027***	$\begin{array}{c} -0.017 \\ (0.053) \\ p = 0.749 \\ t = -0.322 \end{array}$		
Observations R2 Adjusted R2 Residual Std. F Statistic	101 0.972 0.971 Error 0.027 (df = 97) 1,128.081*** (df = 3; 97)	$\begin{array}{c} 100\\ 0.945\\ 0.943\\ 0.038 (df = 96)\\ 545.046^{***} (df = 3; 96) \end{array}$		
Note:		*n<0 1: **n<0 05: ***n<0 01		

Perfect	Mul	ltico	llinea	arity
0000				

Multicollinearity Broadly

Application in R

First differences II

> vif(us_model)			
odp per capita	urbanization	reaime	
5.023951	1.633371	6.213308	
<pre>> vif(us_model2)</pre>			
gdp_per_capita	urbanization	diff_regime	
1.038942	1.038071	1.001096	