
A Field Guide to Base R
Josh Allen

Department of Political Science at Georgia State University

1/27/23



A Review of the Basics of R



Setting Your Working Directory

Your working directory is where all your files live

You may know where your files are…

But R does not

If you want to use any data that does not come with a package you are going to need to tell R where it
lives



Cats and Boxes

You can put a box inside a box

You can put a cat inside a box

You can put a cat inside a box inside of a box

You cannot put a box inside a cat

You cannot put cat in a cat



Working Directories
getwd()1

[1] 
"/Users/josh/Dropbox/Research-
Data-Services-Workshops/8810-
guest-lecture"

setwd("path/to/your/project") #mac/linux1

setwd("path\to\your\project") # windows2



How To Make Your Life Easier

source: Jenny Bryan



How To Make Your Life Easier
Working Directory for My Laptop Working Directory of My Office

Computer
"/Users/josh/Dropbox/Research-Data-
Services-Workshops/research-data-
services-r-workshops/slides" 

"/Volumes/6TB Raid 
10/Dropbox/Research-Data-Services-
Workshops/research-data-services-r-
workshops/slides"



R Projects



The Mantra

Everything in R is an Object

Everything has a name

You do stuff with functions

Packages(i.e. libraries) are homes to pre-written functions.

You can also write your own functions and in some cases should.



An Example
digi <- c("1","2","3","4")1

mean(digi)2

[1] NA

numbs <- c(1:4)1

mean(numbs)2

[1] 2.5

class(digi)1

[1] "character"

lets <- letters1

class(lets)2

[1] "character"



R Some Basics



Basic Maths

R is equipped with lots of mathematical operations

2+2 ## addition1

[1] 4

4-2 ## subtaction1

[1] 2

600*100 ##multiplication1

[1] 60000

100/10 ##division1

[1] 10

10*10/(3^4*2)-2 ## Pemdas 1

[1] -1.382716

log(100)1

[1] 4.60517

sqrt(100)1



Basic Maths
R is also equipped with modulo operations (integer division and remainders), matrix algebra,
etc

100 %/% 60 # How many whole hours in 100 minutes?1

[1] 1

100 %% 60 # How many minutes are left over?1

[1] 40

m <- matrix(1:8, nrow=2) 1
n <- matrix(8:15, nrow=4) # this is just me creating matrices 2

mat <- matrix(1:15, ncol = 5)3
m %*% n # Matrix multiplication4

     [,1] [,2]
[1,]  162  226
[2,]  200  280

t(mat) # transpose a matrix1

     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6



[3,]    7    8    9
[4,]   10   11   12
[5,]   13   14   15



Logical Statements & Booleans
Test Meaning Test Meaning
x < y Less than x %in% y In set
x > y Greater than is.na(x) Is missing
== Equal to !is.na(x) Is not missing
x <= y Less than or equal to
x >= y Greater than or equal to
x != y Not equal to
x | y Or
x & y And



Booleans and Logicals in Action
1>2 1

[1] FALSE

1<21

[1] TRUE

1 == 21

[1] FALSE

1 < 2 | 3 > 4 ## only one test needs to true to return true1

[1] TRUE

1 < 2 & 3>4 ## both tests must be true to return true1

[1] FALSE



Logicals, Booleans, and Precedence

R like most other programming languages will evaluate our logical
operators(==, >, etc) before our booleans(|, &, etc).

1 > 0.5 & 21

[1] TRUE

What’s happening here is that R is evaluating two separate “logical” statements:

1 > 0.5, which is is obviously TRUE.

2, which is TRUE(!) because R is “helpfully” converting it to as.logical(2).

It is way safer to make explicit what you are doing.

If your code is doing something weird it might just be because of precedence issues

See R Cookbook 2.11

1 > 0.5 & 1 > 21

[1] FALSE

https://rc2e.com/somebasics


Other Useful Tricks
Value matching using %in%

To see whether an object is contained within (i.e. matches one of) a list of items, use %in%.

4 %in% 1:101

[1] TRUE

4 %in% 5:101

[1] FALSE



Cool Now What?

While this is boring it opens up lots

We may need to set up a group of tests to do something to data.

We may need all this math stuff to create new variables

However we need to Assign them to reuse them later in functions.

Including datasets



Everything is an Object

▶



What are Objects?

Objects are what we work with in R

 [1] "is.array"                "is.atomic"              
 [3] "is.call"                 "is.character"           
 [5] "is.complex"              "is.data.frame"          
 [7] "is.double"               "is.element"             
 [9] "is.environment"          "is.expression"          
[11] "is.factor"               "is.finite"              
[13] "is.function"             "is.infinite"            
[15] "is.integer"              "is.language"            
[17] "is.list"                 "is.loaded"              
[19] "is.logical"              "is.matrix"              
[21] "is.na"                   "is.na.data.frame"       
[23] "is.na.numeric_version"   "is.na.POSIXlt"          
[25] "is.na<-"                 "is.na<-.default"        
[27] "is.na<-.factor"          "is.na<-.numeric version"



Vectors

Come in two flavors

Atomic: all the stuff must be the same type

Lists: stuff can be different types

my_vec <- c(1:10)1
is.vector(my_vec)2

[1] TRUE

my_list <- list(a = c(1:4), b = "Hello World", c = data.frame(x = 1:10, y = 1:10))1
is.vector(my_list)2

[1] TRUE



Atomic Vectors

Come in a variety of flavors

Numeric: Can contain whole numbers or decimals

Logicals: Can only take two values TRUE or FALSE

Factors: Can only contain predefined values. Used to store categorical data

Ordered factors are special kind of factor where the order of the level matters.

Characters: Holds character strings

Base R will often convert characters to factors. That is bad because it will choose the
levels for you



Lists

Lists are everywhere in R

data_frame <- data.frame(a = rnorm(3),1

                         b = rnorm(3))2
typeof(data_frame)3

[1] "list"

dats_wrong <- data.frame(a = 1:3,1
                         b = 1:4)2

Error in data.frame(a = 1:3, b = 1:4): arguments imply differing 
number of rows: 3, 4

example_mod <- lm(body_mass_g ~ bill_depth_mm, data = penguins)1

typeof(example_mod)2

[1] "list"

length(example_mod$residuals);length(example_mod$coefficients)1

[1] 342

[1] 2



A Quick Aside on Naming Stuff

Things we can never name stuff

if 1

else 2
while 3
function 4

for5
TRUE 6

FALSE 7
NULL 8
Inf 9

NaN 10
NA 11

There are more see this website for a more complete list

http://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html


A Quick Aside on Naming Stuff(cont)
Semi-reserved words

For simple things like assigning c <- 4 and then doing d <- c(1,2,3,4) R will be able
to distinguish between assign c the value of 4 and the c that calls concatenate which is
way more important in R.

However it is generally a good idea, unless you know what you are doing, to avoid naming
things that are functions in R because R will get confused.

my_cool_fun <- function(x){1
 x <- x*52

return(x)3
}4

5
datas <- c(1:10)6

7

my_cool_fun(datas)8

 [1]  5 10 15 20 25 30 35 40 45 50

my_cool_fun[1]1

Error in my_cool_fun[1]: object of type 'closure' is not subsettable



How and What to Name Objects
The best practice is to use concise descriptive names

When loading in data typically I do raw_my_dataset_name and after data all of my
cleaning I do clean_my_dataset_name

Objects must start with a letter. But can contain letters, numbers, _, or .
snake_case_like_this_is_what_I_use
somePeopleUseCamelCase
some_People.are_Do_not.like_Convention

Example and Discussion provided in  by Hadley WickhamR for Data Sciency

https://r4ds.had.co.nz/workflow-basics.html?q=snake##whats-in-a-name


Your Turn

Create a vector from 1:100

Create a character vector named hp with only the value of harry potter

Find the length of each vector

create a vector named pak to install “marginaleffects”, “modelsummary”

04:00



Navigating Objects in R



Our Data
species island bill_length_mm bill_depth_mm flipper_length_mm b
Adelie Torgersen 39.1 18.7 181
Adelie Torgersen 39.5 17.4 186
Adelie Torgersen 40.3 18.0 195
Adelie Torgersen NA NA NA
Adelie Torgersen 36.7 19.3 193
Adelie Torgersen 39.3 20.6 190



Indexing []

We can use column position to index objects.

There are two slots we can use rows and columns in the brackets if we are using a dataframe like this.

object_name[row number, column number]

We can also subset our data by column position using : or c(column 1, column 2)

species
Adelie species island

Adelie Torgersen
species bill_depth_mm
Adelie 18.7

penguins[1,1]1 penguins[1,1:2]1

penguins[1,c(1,4)]2



Indexing [] (cont)

We can tell R what element of a list using a combo of [] and [[]]

my_list <- list(a = 1:4, b = "Hello World", c = data.frame(x = 1:3, y = 4:6))1

my_list[[1]][2] ## get the first item in the list and the second element of that item1

[1] 2

my_list[2]1

$b
[1] "Hello World"

my_list[[3]][[1]]1

[1] 1 2 3



[] vs [[]]



Negative Indexing

We can also exclude various elements using - and/or tests that I showed you
earlier

island bill_length_mm bill_depth_mm flipper_length_mm body_mass_
Torgersen 39.1 18.7 181 375
Torgersen 39.5 17.4 186 380
Torgersen 40.3 18.0 195 325
Torgersen NA NA NA N
Torgersen 36.7 19.3 193 345
Torgersen 39.3 20.6 190 365

penguins[,-1]1



Negative Indexing(cont)

We can use - or : as well to subset stuff

flipper_length_mm body_mass_g se
181 3750 ma
186 3800 fe
195 3250 fe
NA NA NA
193 3450 fe
190 3650 ma

species bill_depth_mm body_mass_
Adelie 18.7 375
Adelie 17.4 380
Adelie 18.0 325
Adelie NA N
Adelie 19.3 345
Adelie 20.6 365

penguins[,-(1:4)]1 penguins[,-c(2,3,5,8)]1



Subsetting By Tests

species sex
Adelie female
Adelie female
NA NA
Adelie female
Adelie female
NA NA
NA NA
NA NA
NA NA
Adelie female

penguins[penguins["sex"] == "female", c("species", "sex")]1



$ Indexing
A really useful way of indexing in R is referencing stuff by name rather than position. - The way
we do this is throught the $

my_list$a1

[1] 1 2 3 4

my_list$b1

[1] "Hello World"

my_list$c1

  x y
1 1 4
2 2 5
3 3 6



Indexing(cont)
my_list[[3]][[2]] ## these are just returning the same thing 1

[1] 4 5 6

my_list$c$y1

[1] 4 5 6



$ in action
This will just subset things

species island bill_length_mm
Gentoo Biscoe 46.1
Gentoo Biscoe 50.0
Gentoo Biscoe 48.7
Gentoo Biscoe 50.0
Gentoo Biscoe 47.6
Gentoo Biscoe 46.5
Gentoo Biscoe 45.4
Gentoo Biscoe 46.7
Gentoo Biscoe 43.3
Gentoo Biscoe 46.8

penguins[penguins$species == "Gentoo", c("species", "island", "bill_length_mm")] 1



Comparing what we know how to do

Tidyverse

species island sex
Adelie Torgersen male
Adelie Torgersen female
Adelie Torgersen female
Adelie Torgersen NA
Adelie Torgersen female

Base R

species island sex
Adelie Torgersen male
Adelie Torgersen female
Adelie Torgersen female
Adelie Torgersen NA
Adelie Torgersen female

Select Filter Mutate

penguins |>1
select(species, island, sex)2

penguins[, c("species", "island", "sex")]1



Sometimes it is just quicker
penguins_base$range_body_mass <- max(penguins_base1

2
penguins_base$bill_ratio  <- penguins_base$bill_le3

4

mean(penguins_base$body_mass_g, na.rm = TRUE)5

[1] 4201.754

penguins <- penguins |>1

mutate(range_body_mass = max(body_mass_g, na.rm = 2
       bill_ration = bill_length_mm/bill_depth_mm)3

4

summarise(penguins, mean(body_mass_g, na.rm = TRUE5

# A tibble: 1 × 1
  `mean(body_mass_g, na.rm = 
TRUE)`
                              
<dbl>
1                             
4202.



Sometimes the Original is Just as Good as the
Wrapper

name eye_color
Luke Skywalker blue
Owen Lars blue
Beru Whitesun lars blue
Obi-Wan Kenobi blue-gray
Anakin Skywalker blue
Wilhuff Tarkin blue
Chewbacca blue
Jek Tono Porkins blue

name eye_color
Luke Skywalker blue
Owen Lars blue
Beru Whitesun lars blue
Obi-Wan Kenobi blue-gray
Anakin Skywalker blue
Wilhuff Tarkin blue
Chewbacca blue
Jek Tono Porkins blue

data("starwars")1

2
filter(starwars, str_detect(eye_color, "blu")) 3

starwars[grepl("blu",starwars$eye_color),]1



Finding Help

Asking for help in R is easy the most common ways are
help(thingineedhelpwith) and ?thingineedhelpwith

?thingineedhelpwith is probably the most common because it requires less typing.

Base and Tidy functions differ in many ways other than naming conventions

?grepl1



Finding Help





Your Turn

Find the minimum value of bill_length_mm

Find the maximum value of body_mass_g

Subset the penguins data any way you want using column position or $

Assign each of them to an object

Create a vector from 1:10 index that vector using [] to return 2 and 4



The Tidyverse issue



Learning to Live With Each other
penguins$big_peng <-  dplyr::case_when(penguins$body_mass_g > mean(penguins$body_mass_g, na.rm = TRUE) ~ "Big 1

     penguins$body_mass_g < mean(penguins$body_mass_g, na.rm = TRUE) ~ "Smol Penguin",2
     penguins$body_mass_g == mean(penguins$body_mass_g, na.rm = TRUE) ~ "Average Penguin")3

4

penguins$body_mass_g[is.na(penguins$body_mass_g)] <- 05
6

penguins |>7
select(body_mass_g, big_peng)8

# A tibble: 344 × 2
   body_mass_g big_peng    
         <dbl> <chr>       
 1        3750 Smol Penguin
 2        3800 Smol Penguin
 3        3250 Smol Penguin
 4           0 <NA>        
 5        3450 Smol Penguin
 6        3650 Smol Penguin
 7        3625 Smol Penguin
 8        4675 Big Penguin 
 9        3475 Smol Penguin



Learning to Live with Each Other

Lots of stuff is repetitive
Repetition isn’t necessarily bad but it can easily lead to mistakes

penguins |>1
drop_na() |>2
mutate(body_mass_g = body_mass_g - min(body_mass_g, na.rm = TRUE) / 3

    (max(body_mass_g, na.rm = TRUE) - min(body_mass_g, na.rm = TRUE)),4
    flipper_length_mm = flipper_length_mm - min(flipper_length_mm, na.rm = TRUE) / 5
    (max(flipper_length_mm, na.rm = TRUE) - min(flipper_length_mm, na.rm = TRUE)),6

    bill_length_mm = bill_length_mm - min(bill_length_mm, na.rm = TRUE) / 7
    (max(bill_length_mm, na.rm = TRUE) - min(flipper_length_mm, na.rm = TRUE)))8



One way this helps us

species island bill_length_mm bill_depth_mm flipper_length_mm b
Adelie Torgersen 37.93273 17.14048 178.0847

Adelie Torgersen 38.33273 15.84048 183.0847

Adelie Torgersen 39.13273 16.44048 192.0847

# we can rewrite this code pretty easily and iterate over the entire dataset 1

rescale <- function(x){2
    rng <- range(x, na.rm = TRUE, finite = TRUE)3

4

   x-rng[1]/(rng[2] - rng[1])5
6

}7
8

penguins |>9

mutate(across(where(is.numeric), \(x) rescale(x)))10



species island bill_length_mm bill_depth_mm flipper_length_mm b
Adelie Torgersen NA NA NA
Adelie Torgersen 35.53273 17.74048 190.0847



Reading in Data Gets easier
rm(list = ls())1

penguins <- palmerpenguins::penguins2
starwars <- dplyr::starwars3
data("mpg")4

data("mtcars")5
6

data_names = c("mpg", "penguins", "starwars", "mtcars")7
8

for(i in 1:length(data_names)) {                          9

  readr::write_csv(get(data_names[i]),                              10
             paste0("data/",11
                    data_names[i],12

                    ".csv"))13
}14

my_files <- list.files(path = "data/",pattern = "*.csv", full.names = TRUE)15
16

# Further arguments to read.csv can be passed in ...17



Which Gives Us
[1] "all_csv"    "data_names" "i"          "mpg"        "mtcars"    
[6] "my_files"   "penguins"   "starwars"  




