Probability

Dr. Michael Fix
mfix@gsu.edu
Georgia State University

18 January 2024

Note: The slides are distributed for use by students in POLS 8810. Please do not reproduce or redistribute these slides to others without express permission from Dr. Fix.

Introducing Probability

- Probability is the limiting factor of relative frequency
- Probability is indicated as number between 0 (never happens) and 1 (always happens)
- In a frequency table:

Relative Frequency			
Outcome	10 Tosses	50 Tosses	∞ Tosses
Heads	0.3	0.54	0.5
Tails	0.7	0.46	0.5
Total	1.0	1.0	1.0

- In mathematical symbols:

$$
\begin{equation*}
\operatorname{Pr} \equiv \lim \left(\frac{f}{n}\right) \tag{1}
\end{equation*}
$$

Basics of Probability Models

- These core principles are useful to us in a number of ways
- One is to work backwards and use samples to estimate population distributions
- The other is to use known (population) probabilities to determine the likelihood of a particular event occurring
- Likelihood is simple with something like a single coin toss: each toss is equally likely to be heads or tails
- Probability gets more complicated when we start to consider multiple events: what is the probability of throwing heads 3 time in a row?

Probability Models

Probability Models

Tree Model

- This model allows you to see the possible outcomes
- For three coin tosses:
- After one toss there are two outcomes: heads or tails $\left(P r_{\text {heads }}=0.5\right)$
- After two tosses there are now four outcomes: heads or tails following the initial heads or tails ($P r_{2 \text { heads }}=0.25$)
- After three there are now eight outcomes in the same pattern: $\left(P_{r_{3 h e a d s}}=0.125\right)$
- All together these eight outcomes are known as the outcome set (S)

Combining Probabilities

- We can generalize this logic:
- The previous example asked the likelihood of heads and heads and heads
- For cases of and (\cap) we multiply probabilities
- Probabilities range from 0 to 1 , so multiplying fractions leads to smaller fractions (less likely events)
- This is known as a joint probability
- What about something slightly more complex: the probability of at least two heads in three flips?

Combining Probabilities

- We now have more than one way to get an outcome:
- Head Head Head or Head Tail Head or Tail Head Head or Tail Head Tail
- For cases of or (\cup) we add probabilities:
- $P r_{2 h e a d s}=0.125+0.125+0.125+0.125=0.5$
- The probability of the combined events (E) is a subset of the full outcome set (S)
- and is the sum of the constituent events $\left(e_{1}, e_{2}, \ldots\right)$
- Formally:

$$
\begin{equation*}
\operatorname{Pr}(E)=\sum \operatorname{Pr}(e) \tag{2}
\end{equation*}
$$

Combining Subsets

- Do the subsets (E and F for example) overlap?
- If not, combining subsets is as simple as single events $(E+F)$
- If so, combinations need to account for overlap
- Combined with or: count all outcomes in E, F, or both sets
- Combined with and: count just those in both sets
- Combining two overlapping sets: add the or and subtract the and

$$
\begin{equation*}
\operatorname{Pr}(E \cup F)=\operatorname{Pr}(E)+\operatorname{Pr}(F)-\operatorname{Pr}(E \cap F) \tag{3}
\end{equation*}
$$

Combining Subsets

- Mutual exclusivity exists when there is no overlap between subsets: $\operatorname{Pr}(E \cap F)=\emptyset$
- So:

$$
\begin{equation*}
\operatorname{Pr}(E \cup F)=\operatorname{Pr}(E)+\operatorname{Pr}(F) \tag{4}
\end{equation*}
$$

- Each subset also has an opposite set known as a complement
- The complement (\bar{E}) is every outcome not contained in the set (E)
- For example, the complement of throwing at least two heads is the probability of throwing fewer than two heads

$$
\begin{equation*}
\operatorname{Pr}(E)=1-\operatorname{Pr}(\bar{E}) \tag{5}
\end{equation*}
$$

Conditional Probability

- Conditional Probability involves calculating probability based on a limiting condition
- We are looking for the probability of outcome (E) given the condition (F)
- For example: the probability of tossing at least two heads given the first toss was heads
- Formally:

$$
\begin{equation*}
\operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(E \cap F)}{\operatorname{Pr}(F)} \tag{6}
\end{equation*}
$$

- With a little algebra we can solve for $\operatorname{Pr}(E \cap F)$

$$
\begin{equation*}
\operatorname{Pr}(E \cap F)=\operatorname{Pr}(F) \operatorname{Pr}(E \mid F) \tag{7}
\end{equation*}
$$

Statistical Independence

- A special case of conditional probability
- Unconditional probability of an event is the same as the conditional probability
- Indicates that the condition has no impact on the probability
- Formally:

$$
\begin{equation*}
\operatorname{Pr}(F \mid E)=\operatorname{Pr}(F) \tag{8}
\end{equation*}
$$

- Statistical independence works both ways: if E is independent of F then F is independent of E.
- Independence simplifies combined probabilities:

$$
\begin{equation*}
\operatorname{Pr}(E \cap F)=\operatorname{Pr}(E) \operatorname{Pr}(F) \tag{9}
\end{equation*}
$$

Bayes Theorem

- The same problem looked at from a different perspective
- Reverses the probability tree
- Two key terms:
- Prior Probabilities: initial (hypothesized) probabilities before testing
- Posterior Probabilities: probabilities (observed) after testing

$$
\begin{equation*}
\operatorname{Pr}(E \mid F)=\frac{\operatorname{Pr}(F \mid E) \operatorname{Pr}(E)}{\operatorname{Pr}(F)} \tag{10}
\end{equation*}
$$

Introducing Probability Distributions

- Simple probability tables and trees work for small events
- How do we handle probabilities in larger data?
- Probability distributions represent these more effectively
- Different types of data utilize different types of probability distributions
- Discrete variables
- Continuous variables

Discrete Probability Distributions

- Discrete probability distributions are based on frequency
- A discrete random variable can only take on specific values (0 or 1 , count data, etc.)
- The probability distribution of a discrete random variable determines the frequency of a random sample
- Random samples of the population should provide an approximation of the population parameters
- Probability distributions can also provide descriptive information about the shape of the data (moments)
- Probability distributions describe the population distribution

Discrete Probability Distributions

Sample and Population Values

- Recall that sample statistics are indicated by Latin letters
- Mean and Variance can be derived from the probability distribution $p(x)$ in addition to relative frequency $\left(\frac{f}{n}\right)$
- Mean of sample:

$$
\begin{equation*}
\bar{X}=\sum x\left(\frac{f}{n}\right) \tag{11}
\end{equation*}
$$

- Variance of sample:

$$
\begin{equation*}
s^{2}=\sum(x-\bar{X})^{2}\left(\frac{f}{n}\right) \tag{12}
\end{equation*}
$$

Discrete Probability Distributions

Sample and Population Values

- Recall that population parameters by Greek letters
- Mean of Population:

$$
\begin{equation*}
\mu \equiv \sum x p(x) \tag{13}
\end{equation*}
$$

- Variance of Population:

$$
\begin{equation*}
\sigma^{2} \equiv \sum(x-\mu)^{2} p(x) \tag{14}
\end{equation*}
$$

- Or more simply:

$$
\begin{equation*}
\sigma^{2}=\sum x^{2} p(x)-\mu^{2} \tag{15}
\end{equation*}
$$

The Binomial Distribution

Definitions and Assumptions

- A specific form of a discrete probability distribution
- Discrete values can only be one of two values (hence: binomial)
- Useful for measuring events: did it occur or not?
- Notation and assumptions:
- n - number of observations in the sample
- s - number of successes in the sample
- s occurs with probability π, the opposite is the compliment of $\pi(1-\pi)$
- Assume that each observation is statistically independent

The Binomial Distribution

Formula and Notation

- The general form:

$$
\begin{equation*}
p(s)=\binom{n}{s} \pi^{s}(1-\pi)^{n-s} \tag{16}
\end{equation*}
$$

- The binomial coefficient $\binom{n}{s}$ is defined as:

$$
\begin{equation*}
\binom{n}{s}=\frac{n!}{s!(n-s)!} \tag{17}
\end{equation*}
$$

The Binomial Distribution

Formula and Notation

- The general form:

$$
\begin{equation*}
p(s)=\binom{n}{s} \pi^{s}(1-\pi)^{n-s} \tag{16}
\end{equation*}
$$

- The binomial coefficient $\binom{n}{s}$ is defined as:

$$
\begin{equation*}
\binom{n}{s}=\frac{n!}{s!(n-s)!} \tag{17}
\end{equation*}
$$

- And finally n factorial ($n!$) is:

$$
\begin{equation*}
n!=n(n-1)(n-2) \cdots 1 \tag{18}
\end{equation*}
$$

The Binomial Distribution

Uses of the Distribution

- Sampling from large populations
- In sufficiently large samples, random draws can adequately satisfy independence assumption without the need for replacement
- The binomial distribution can help us determine the likelihood of drawing a certain number of successes (or failures)
- This provides a basis for measures of confidence in causal analysis

Continuous Distributions

General Concepts

- Not all data is discrete, many measures have an infinite number of possible observations
- Simple frequencies do not work with continuous data without blocking observations (1-10, 10-20, etc.)
- Frequency can be shown as blocks in a histogram, as the number of observations increase and block size decreases we can represent frequency as a density curve
- The probability distribution then is measured by the area under a range of the curve rather than the size of the block (as in discrete data)

Continuous Distributions

General Concepts

- The probability distribution then is measured by the area under a range of the curve rather than the size of the block (as in discrete data)
- Measuring area under curves means using integral calculus to calculate probability
- Using relative frequency density is more useful than raw frequency
- In this case the sum of the area within the histogram bars (or area under curve) is equal to 1

$$
\begin{equation*}
\text { Relative frequency density } \equiv \frac{\text { relative frequency }}{\text { cell width }} \tag{19}
\end{equation*}
$$

Visualizing A Continuous Distribution

- Start with a typical histogram with the observations in around 10 blocks

Histogram of Data

Visualizing A Continuous Distribution

- Double the number of blocks

Histogram of Data

Visualizing A Continuous Distribution

- Finally smooth it out to infinite observations
- This is the underlying probability distribution

Distribution

The Normal (Z) Distribution

- This is the standard "bell curve"
- Also known as the Z distribution or Gaussian curve
- The standard normal distribution
- $\mu=0$
- $\sigma=1$
- Z is the number of standard deviations a given point is from the mean
- The area under the curve represents the probability of a value
- Above (or below) a certain Z value the area provides the probability of a value higher (or lower) than that value

The General Normal Distribution

- Not all normal distributions are centered on 0 with $\sigma=1$
- The distribution can be generalized to other values of μ and σ
- Z remains the measure of distance from the center in standard deviations
- Z can be calculated for observation X as:

$$
\begin{equation*}
Z=\frac{X-\mu}{\sigma} \tag{20}
\end{equation*}
$$

Distributions with Two Variables

- Combining probability distributions to work with two variables
- Using more than one variable allows us to do more than describe a distribution
- Builds on concepts of probability and probability distributions
- Introducing new notations for effectively handling two variables

Distributions with Two Variables

Joint Distributions

- Joint distributions allow for showing probability relationships with two variables
- The goal is to show what the probability of a given X value (x) and a given Y value (y)
- In familiar notation:

$$
\begin{equation*}
\operatorname{Pr}(X=x \cup Y=y) \tag{21}
\end{equation*}
$$

- Becomes:

$$
\begin{equation*}
p(x, y) \tag{22}
\end{equation*}
$$

Marginal Distributions

- Marginal distributions focus on the distribution of one variable given the other is held constant
- For example: distribution of x given $y=2$
- Formally this is represented as:

$$
\begin{equation*}
p(x)=\sum_{y} p(x, y) \tag{23}
\end{equation*}
$$

- Intuitively, we can see the sums in the margins of a table

Independence for Joint Probability Distributions

- Independence for all values x and y is denoted as:

$$
\begin{equation*}
p(x, y)=p(x) p(y) \tag{24}
\end{equation*}
$$

- This means the product of the marginal values for each cell must equal the value in the cell
- Tables of independent joint distributions must be proportional in both the columns and the rows

\[

\]

