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Intro to Inference

• Population: Yi = β0 + Xiβ1 + ui
• Note a minor notational change from last week in that I am

now using β0 instead of α

• When ui ∼ N(0, σ2), our estimators β̂0 (or b0) and β̂1 (or b1)
are defined:

• β̂0 = Ȳ − β̂1X̄

• β̂1 =
∑

(Xi−X̄ )(Yi−Ȳ )∑
(Xi−X̄ )2
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The Key Point

The estimators β̂0 and β̂1 are random variables.

Due to (inter alia):

• Sampling variability: Random samples from a population →
slightly different β̂0s and β̂1s.

• Random variability in X: In cases where X is also a random
variable. . .

• Intrinsic variability in Y: Because Yi = µ+ ui .
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Utility of β̂0 and β̂1

• Remember that β̂0 and β̂1 (like all estimators) are point
estimates.

• Alone, point estimates border on useless.

• What else do we need?
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Thinking about Variance

• X is fixed (by assumption or nature)
• Y has both systematic and random variation

• Systematic (related to X) is what we seek to explain
• Random goes into the error term, ui , and we assume:
• ui ∼ i .i .d .N(0, σ2)
• Or, we can define the stochastic variation in Y as
• Var(Y |Xβ) = σ2
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Thinking about Variance

• Combining the above with the assumption that X is “fixed”
(something we will return to later in the course), we can
derived estimates of the variance of β̂0 and β̂1

• Var(β̂0) =
∑

X 2
i

N
∑

(Xi−X̄ )2
σ2

• Var(β̂1) =
σ2∑

(Xi−X̄ )2

• Cov(β̂0, β̂1) =
−X̄∑

(Xi−X̄ )2
σ2

• Note: you can find proofs for these online or in many texts if
you are interested.
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Important Implications

1. Variance of both estimates β̂0 and β̂1 is directly proportional
to σ2

2. Variance of both estimates is inversely proportional to∑
(Xi − X̄ )

3. As N increases, the variability of our estimates will go down

4. The covariance of the two estimates depends on the sign of X
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OLS is BLUE

• Under a set of specific assumptions, the OLS estimator is
ideal for estimating β0 and β1

• Specifically, the OLS estimator is BLUE:
• Best (minimum variance)
• Linear
• Unbiased
• Estimator

• Unbiasedness and minimum variance can be shown via formal
proof
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Gauss-Markov Theorem

• Imagine:

β̂1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

• Rewrite:

β̂1 =

∑N
i=1(Xi − X̄ )Yi∑N
i=1(Xi − X̄ )2

.

• k are “weights”:

β̂1 =
∑

kiYi

• where ki =
Xi−X̄∑
(Xi−X̄ )2
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Gauss-Markov (continued)

• Alternative (non-LS) estimator:

β̃1 =
∑

wiYi

• Unbiasedness requires E(β̃1) = β1:

E(β̃1) =
∑

wiE(Yi )

=
∑

wi (β0 + β1Xi )

= β0
∑

wi + β1
∑

wiXi

• Thus, β̃1 is only unbaised if
∑

wi = 0 and
∑

wiXi = 1
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Gauss-Markov (continued)

• Variance:

Var(β̃1) = Var
(∑

wiYi

)
= σ2

∑
w2
i

= σ2
∑[

wi −
Xi − X̄∑
(Xi − X̄ )2

+
Xi − X̄∑
(Xi − X̄ )2

]2
= σ2

∑[
wi −

Xi − X̄∑
(Xi − X̄ )2

]2
+ σ2

[
1∑

(Xi − X̄ )2

]
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Gauss-Markov (continued)
• Because σ2

[
1∑

(Xi−X̄ )2

]
is a constant, min[Var(β̃1)] minimizes

∑[
wi −

Xi − X̄∑
(Xi − X̄ )2

]2
• Minimized at:

wi =
Xi − X̄∑
(Xi − X̄ )2

• implying:

Var(β̃1) =
σ2∑

(Xi − X̄ )2

= Var(β̂1)
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Classical Hypothesis Testing — Quick Review

• Declare a null hypothesis: H0

• Assuming that H0 is true, calculate the likelihood of obtaining
our sample value

• Set a threshold for significance
• This value is the probability of getting your sample statistic

given H0 is true that you are willing to accept
• The value is known by the Greek letter α
• The generic is α = 5% but it should be based on the context

of the study and data
• This value sets the critical value
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Classical Hypothesis Testing — Quick Review

• Compare the sample value to H0

• If the sample value is above (or below) the critical value we
can reject H0

• Note that we are not confirming HA but instead rejecting H0

• Instead of utilizing a critical point every time we can compare
α to the p-value

• We can reject H0 if p ≤ α

• p-values are also useful as they allow us to see how close or
far from the threshold α an estimate lies

• Note: a p-value is simply the probability that we would get our
sample value given that the null hypothesis is true



Intro Gauss-Markov Inference Application in R

Assumptions and Implications

• As noted above, we assume our error term is normally
distributed (ui ∼ N(0, σ2)

• This implies that since β̂0 and β̂1 are random variables that
are functions of ui :

β̂0 ∼ N(β0,Var(β̂0)

β̂1 ∼ N(β1,Var(β̂1)
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Z-Score

• This should also make inference easy as the Z-score for the βs
should be:

zβ̂1
=

(β̂1 − β1)√
Var(β̂1)

=
(β̂1 − β1)

s.e.(β̂1)

• Note zβ̂1
∼ N(0, 1)
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A Problem

• The formula for zβ̂1
requires us to calculate s.e.(β̂1)

• This requires us to know σ2 (the true population error
variance)
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Solution

• Instead we can use the estimated variance of the errors, σ̂2

• σ̂2 is an unbiased estimator of σ2 (see text for proof)

• We can then calculate:

̂s.e.(β̂1) =
√

V̂ar(β̂1)

=

√
σ̂2∑

(Xi − X̄ )2

=
σ̂√∑

(Xi − X̄ )2
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Solution

• While this does allow for inference, it has one further
implication:

tβ̂1
≡ (β̂1 − β1)

̂s.e.(β̂1)
=

(β̂1 − β1)
σ̂√∑

(Xi−X̄ )2

=
(β̂1 − β1)

√∑
(Xi − X̄ )2

σ̂
∼ tN−k
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Predicted Values

• Point prediction:

Yk = β̂0 + β̂1Xk

• Yk is unbiased:

E(Yk) = E(β̂0 + β̂1Xk)

= E(β̂0) + XkE(β̂1)

= β0 + β1Xk

= E(Yk)
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Predicted Values

• Variability:

Var(Ŷk) = Var(β̂0 + β̂1Xk)

=

∑
X 2
i

N
∑

(Xi − X̄ )2
σ2 +

[
σ2∑

(Xi − X̄ )2

]
X 2
k + 2

[
−X̄∑

(Xi − X̄ )2
σ2

]
Xk

= σ2

[
1

N
+

(Xk − X̄ )2∑
(Xi − X̄ )2

]
• This means that Var(Yk):

• Decreases in N
• Decreases in Var(X )
• Increases in |X − X̄ |
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Out of Sample Predictions
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Let’s use a toy model
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Model output
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Let’s look at y , ŷ , and residuals
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Let’s use plots for closer examination!
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Residual vs fitted values plot
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Histogram of residuals
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