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Variable Types Revisited

® Four types of variables:
1. Nominal (“Factors”)

2. Ordinal
3. Interval
4. Ratio

Transformations
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® |n the context of OLS: Which work as DVs? Which work as

1Vs?
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Dummy Variables

A term that gets used a lot to mean many things. ..

Naturally dichotomous things

Simplified categorizations

® “Factor” variables

Ordinal variables (treated as “factors”)
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Dummy Variable Coding

® The term "dummy” variable is associate with a {0,1} coding
scale

°eg.

0 if man
woman =
1 if woman

o Why {0,117
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Dummy Variable Coding

® Two reasons:
1. Math (will talk about this in a minute)
2. Software
® Theoretically, as this variables have no meaningful ordering
among their values, the assigned numbers do not matter

® However, you should always name the variable to correspond
outcome of interest and set that outcome equal to 1.
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Bivariate Regression with Dichotomous X's
The Math

® For
Yi = Bo+ B1D; + u;
® we have
E(YID =0) = fo
® and

E(YID = 1) = o + 6.
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Bivariate Regression with Dichotomous X's
The Intuition

® Intuitively, we think of OLS as “fitting a line"
® This breaks down with a dummy IV:
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Bivariate Regression with Dichotomous X's

The Intuition
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Regression with Dichotomous and Continuous X
The Math

e For,

Yi = Bo+ B1Di + B2 Xi + uj
® we have

E(Y|X,D =0) = Bo + £2X;
® and

E(Y[X,D =1) = (8o + p1) + BaXi
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Regression with Dichotomous and Continuous X
The Intuition

x2
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Regression with Dichotomous and Continuous X
The Intuition

® As the prior slide shows, effectively the dummy variable
represents an intercept shift.

® The estimated effect of X; on Y; (/32) determines the slope of
the regression line and is unchanged based on the value of D;.
e BUT, the intercept of the regression line shifts based on the
value of D;
® When D; = 0, the intercept is 5y
® When D; =1, the intercept is (8o + f1)
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Multiple Dummies
The Math

® For

Yi = Bo + B1D1j + BoDoj + ... + B¢ Dyi + u;
® \We have

E(Y|Dy =0)Vkel=p

e Otherwise,

l
E(Y)=Bo+ Y BkVks.t.Di=1
k=1
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Multiple Dummies
An Important Note

® Where the D, are mutually exclusive and exhaustive:

® This is usually the case for so called “factor” variables
® The expected values are the same as the within-group means.
® |dentification requires that we either

® omit a “reference category,” or

® omit fo.
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Multiple Dummies
Ordinal Variables: A Special Case

® Suppose we have:

party =

—2 = Strong Democrat
—1 = Weak Democrat
0 = Independent

1 = Weak Republican
2 = Strong Republican
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Multiple Dummies
Ordinal Variables: A Special Case

® \We could estimate:

Yi = Bo + fr(party;) + uj

e Effectively treating an ordinal variable as if it was continuous
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Multiple Dummies
Ordinal Variables: A Special Case

® Alternatively, we could convert it to a series of dummies

Y; = Bo + Bi(strongdem;) + (2 (weakdem;)+
B3(weakgop;) + Ba(stronggop;) + uj

® Note the excluded “reference category” as the outcomes are
mutually exclusive and exhaustive
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Ordinal Variables: A Comparison

Predicting democracy in the US

Political Polarization q

Paolitical Polarization |
To somewhat extent

Political Polarization |
Tao noticeable extent

Political Polarization |
To alarge extent

0.1 0z 03
Coefficient Estimate with 95% Cls

Models Ordinal DV Model  *  Continuous DV Model
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Why Transform Variables?

¢ Normality (of u;s)
® |inearity
e Additivity

¢ Interpretation / Model Specification

Note: John Fox has some really helpful slides online that you might find useful
for more depth on various transformations.


https://socialsciences.mcmaster.ca/jfox/Courses/soc740/lecture-2-notes.pdf
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Monotonic Transformations

“Family of Powers and Roots”

Transformation p f(X) Fox's f(X)
Cube 3 X3 %
Square 2 X? X22*1
(None/ldentity) (1) (X) (X)
Square Root : VX 2(vX =1)
Cube Root i VX 3(VX-1)
Log 0 (sort of)  In(X) In(X)
1
i
Inverse Cube Root -1 3%/)7 f%
1
1 1 (T’l)
Inverse Square Root -5 X f%
1
Inverse -1 % (Xfll)
1 (-1
Inverse Square -2 Xz —
()
Inverse Cube -3 e X

|
oo
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A General Rule

Using higher-order power transformations (e.g.
squares, cubes, etc.) “inflates” large values
and “compresses” small ones; conversely, using
lower-order power transformations (logs, etc.)
“compresses” large values and “inflates” (or
“expands”) smaller ones.
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Nonmonotonicity

Simple solution: Polynomials

® Second-order / quadratic:

Y; = Bo+ B1Xi + B X7 + uj
® Third-order / cubic:

Y = Bo + B1.Xi + BoXP + B XP + u;
® pth-order:

Yi = Bo+ S1Xi + ﬁzX,-z + ﬁ3X,-3 + ...+ 5pX,-p + u;
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How Do You Know?

Plots are your best friend!
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How Do You Know? Toy Model Example

my_data <- readRDS("data/vdeml2.rds")

us_data <- my_data |>
filter(country_name == "United States of America") |>
rename(democracy = v2x_polyarchy,
gdp_per_capita = e_gdppc,
urbanization = e_miurbanti,
regime = v2x_regime,
polarization = v2cacamps,
polarization_ordinal = v2cacamps_ord) |>
mutate(regime_binary = ifelse(regime %in% c(2,3), 1, 0),
high_polarization = ifelse(polarization >= -1, 1, 0))

Transformations
0O0000e000

chart.Correlation(us_data |> select(democracy, gdp_per_capita, urbanization))

multiple <- lm(democracy ~ gdp_per_capita + urbanization, data = us_data)

plot(multiple)
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First, check your variables
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Residuals

IStandardized residualsl

Dummies

Model diagnostics using plot()

Residuals vs Fitted
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Residual distribution and density

hist(multiple$residuals, freq = F, xaxt = "n", xlab = "", ylab = "", main = "")
par(new = T)
plot(density(resid(multiple)))

density.default(x = resid(multiple))
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