Introduction 00 rs Matri 0000000

trices (Intro) 0000 Matrices (Operations)

Matrices (Properties

000000

Matrix Algebra

Dr. Michael Fix

Georgia State University

August 28, 2014

Matrices (Operations) Matrices (Properties) Introduction now with more integers! is delicious!

•0

"Linear algebra is fun. Really!" (Gill 2006, 82)

• Consider the following linear regression model in scalar notation:

- Consider the following linear regression model in scalar notation:
- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n + \epsilon$

- Consider the following linear regression model in scalar notation:
- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n + \epsilon$
- And the same model in matrix notation:

- Consider the following linear regression model in scalar notation:
- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n + \epsilon$
- And the same model in matrix notation:
- $\mathbf{y} = \mathbf{X}\beta + \epsilon;$
- where y is a vector of values for the dependent variable, X is a matrix of values for the independent variables, β is vector of coefficients ε is a vector of disturbance terms

• A vector is a series of numbers in a particular sequence

- A vector is a series of numbers in a particular sequence
- They are defined by a bold faced, lower case letter

- A vector is a series of numbers in a particular sequence
- They are defined by a bold faced, lower case letter
- And can take the form of row vectors:

$$v = [1, 2, 3, 4]$$

- A vector is a series of numbers in a particular sequence
- They are defined by a bold faced, lower case letter
- And can take the form of row vectors:

$$v = [1, 2, 3, 4]$$

• or column vectors:

$$\mathbf{v}' = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$

• Given the following two vectors ${\boldsymbol{u}}$ and ${\boldsymbol{v}}:$

$$\textbf{u}=[1,2,3,4]\text{, and }\textbf{v}=[4,3,2,1]$$

• Given the following two vectors ${\boldsymbol{u}}$ and ${\boldsymbol{v}}:$

$$\textbf{u} = [1,2,3,4]\text{, and }\textbf{v} = [4,3,2,1]$$

- We can add perform vector addition (u+v) or vector subtraction (u-v)

• Given the following two vectors ${\boldsymbol{u}}$ and ${\boldsymbol{v}}$:

$$\textbf{u} = [1,2,3,4]\text{, and }\textbf{v} = [4,3,2,1]$$

- We can add perform vector addition $(u+\nu)$ or vector subtraction $(u-\nu)$
- Additionally, we can multiple or divide a vector by a scalar

• Vector addition (subtraction) involves adding (subtracting) the corresponding elements of two vectors

- Vector addition (subtraction) involves adding (subtracting) the corresponding elements of two vectors
- To perform either operation the vectors *must be either both be column or both row vectors and they must have the same number of elements*

- Vector addition (subtraction) involves adding (subtracting) the corresponding elements of two vectors
- To perform either operation the vectors *must be either both be column or both row vectors and they must have the same number of elements*
- Or, general terms, the vectors must be conformable, meaning the first vector is a size that conforms with the second

- Vector addition (subtraction) involves adding (subtracting) the corresponding elements of two vectors
- To perform either operation the vectors *must be either both be column or both row vectors and they must have the same number of elements*
- Or, general terms, the vectors must be conformable, meaning the first vector is a size that conforms with the second
- If two vectors are nonconformable, then we cannot complete the operation

$$\mathbf{u} + \mathbf{v} = [u_1, u_2, u_3, u_4] + [v_1, v_2, v_3, v_4]$$

$$\mathbf{u} + \mathbf{v} = [u_1, u_2, u_3, u_4] + [v_1, v_2, v_3, v_4]$$

$$= [u_1 + v_1, u_2 + v_2, u_3 + v_3, u_4 + v_4]$$

$$\mathbf{u} + \mathbf{v} = [u_1, u_2, u_3, u_4] + [v_1, v_2, v_3, v_4]$$

$$= [u_1 + v_1, u_2 + v_2, u_3 + v_3, u_4 + v_4]$$

$$\mathbf{u} - \mathbf{v} = [u_1, u_2, u_3, u_4] - [v_1, v_2, v_3, v_4]$$

$$\mathbf{u} + \mathbf{v} = [u_1, u_2, u_3, u_4] + [v_1, v_2, v_3, v_4]$$

$$= [u_1 + v_1, u_2 + v_2, u_3 + v_3, u_4 + v_4]$$

$$\mathbf{u} - \mathbf{v} = [u_1, u_2, u_3, u_4] - [v_1, v_2, v_3, v_4]$$

$$= [u_1 - v_1, u_2 - v_2, u_3 - v_3, u_4 - v_4]$$

$$\mathbf{u} + \mathbf{v} = [1, 2, 3, 4] + [4, 3, 2, 1]$$

$$\mathbf{u} + \mathbf{v} = [1, 2, 3, 4] + [4, 3, 2, 1]$$

$$= [1+4, 2+3, 3+2, 4+1]$$

$$\mathbf{u} + \mathbf{v} = [1, 2, 3, 4] + [4, 3, 2, 1]$$
$$= [1 + 4, 2 + 3, 3 + 2, 4 + 1]$$
$$= [5, 5, 5, 5]$$

$$\mathbf{u} + \mathbf{v} = [1, 2, 3, 4] + [4, 3, 2, 1]$$
$$= [1 + 4, 2 + 3, 3 + 2, 4 + 1]$$
$$= [5, 5, 5, 5]$$

$$\bm{u}-\bm{v}=[1,2,3,4]-[4,3,2,1]$$

$$\mathbf{u} + \mathbf{v} = [1, 2, 3, 4] + [4, 3, 2, 1]$$
$$= [1 + 4, 2 + 3, 3 + 2, 4 + 1]$$
$$= [5, 5, 5, 5]$$
$$\mathbf{u} - \mathbf{v} = [1, 2, 3, 4] - [4, 3, 2, 1]$$

$$= [1-4, 2-3, 3-2, 4-1]$$

$$\mathbf{u} + \mathbf{v} = [1, 2, 3, 4] + [4, 3, 2, 1]$$
$$= [1 + 4, 2 + 3, 3 + 2, 4 + 1]$$
$$= [5, 5, 5, 5]$$
$$\mathbf{u} - \mathbf{v} = [1, 2, 3, 4] - [4, 3, 2, 1]$$
$$= [1 - 4, 2 - 3, 3 - 2, 4 - 1]$$
$$= [-3, -1, 1, 3]$$

Introduction Vectors Matrices (Intro) Matrices (Operations) Matrices (Properties) 00000000 0000 0000 00000 00000 00000

Scalar Multiplication and Division

$$3 * \mathbf{u} = [3 * u_1, 3 * u_2, 3 * u_3, 3 * u_4]$$

Vectors

$$3 * \mathbf{u} = [3 * u_1, 3 * u_2, 3 * u_3, 3 * u_4]$$

$$= [3*1, 3*2, 3*3, 3*4]$$

Vectors

$$3 * \mathbf{u} = [3 * u_1, 3 * u_2, 3 * u_3, 3 * u_4]$$

$$= [3 * 1, 3 * 2, 3 * 3, 3 * 4]$$

$$= \left[3, 6, 9, 12 \right]$$

Vectors

• Scalar multiplication and division simple involves multiplying the scalar by each element of the vector:

$$3 * \mathbf{u} = [3 * u_1, 3 * u_2, 3 * u_3, 3 * u_4]$$

= [3*1, 3*2, 3*3, 3*4]

$$= \left[3, 6, 9, 12 \right]$$

$$3/\mathbf{u} = [3/u_1, 3/u_2, 3/u_3, 3/u_4]$$

Vectors

• Scalar multiplication and division simple involves multiplying the scalar by each element of the vector:

$$3 * \mathbf{u} = [3 * u_1, 3 * u_2, 3 * u_3, 3 * u_4]$$

= [3*1, 3*2, 3*3, 3*4]

$$= \left[3, 6, 9, 12 \right]$$

$$3/\mathbf{u} = [3/u_1, 3/u_2, 3/u_3, 3/u_4]$$

= $[3/1, 3/2, 3/3, 3/4]$

Vectors

• Scalar multiplication and division simple involves multiplying the scalar by each element of the vector:

$$3 * \mathbf{u} = [3 * u_1, 3 * u_2, 3 * u_3, 3 * u_4]$$

= [3*1, 3*2, 3*3, 3*4]

$$= \left[3, 6, 9, 12 \right]$$

$$3/\mathbf{u} = [3/u_1, 3/u_2, 3/u_3, 3/u_4]$$

= $[3/1, 3/2, 3/3, 3/4]$

= [3, 1.5, 1, .75]

Elementary Formal Properties of Vector Algebra

Commutative Property Additive Associative Property Vector Distributive Property Scalar Distributive Property Zero Property Zero Multiplicative Property

$$u + v = (v + u)$$

$$(u + v) + w = u + (v + w)$$

$$s(u + v) = su + sv$$

$$(s + t)u = su + tu$$

$$u + 0 = u \longleftrightarrow u - u = 0$$

$$0u = 0$$

• A matrix is simply a rectangular array of numbers (e.g. any dataset)

- A matrix is simply a rectangular array of numbers (e.g. any dataset)
- The individual elements of a matrix are ordered by row and column

- A matrix is simply a rectangular array of numbers (e.g. any dataset)
- The individual elements of a matrix are ordered by row and column
- And the matrix itself is defined by these two dimensions, such that a matrix with *i* rows and *j* columns is of dimension *i* × *j*

- A matrix is simply a rectangular array of numbers (e.g. any dataset)
- The individual elements of a matrix are ordered by row and column
- And the matrix itself is defined by these two dimensions, such that a matrix with *i* rows and *j* columns is of dimension *i* × *j*
- Example:

$$\mathbf{X}_{2 \times 2} = \left[\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array} \right]$$

• More generally, we can define the elements on any $n \times p$ matrix by subscripting

- More generally, we can define the elements on any n x p matrix by subscripting
- Example:

 $\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & \dots & x_{1(p-1)} & x_{1p} \\ x_{21} & x_{22} & \dots & \dots & x_{2(p-1)} & x_{2p} \\ \vdots & \vdots & \ddots & & \vdots & \vdots \\ \vdots & \vdots & \ddots & & \vdots & \vdots \\ \vdots & \vdots & & \ddots & & \vdots & \vdots \\ x_{(n-1)1} & x_{(n-1)2} & \dots & \dots & x_{(n-1)(p-1)} & x_{(n-1)p} \\ x_{n1} & x_{n2} & \dots & \dots & x_{n(p-1)} & x_{np} \end{bmatrix}$

• Square Matrix — A matrix with the same number of rows and columns

Square Matrix — A matrix with the same number of rows and columns

$$\mathbf{X} = \begin{bmatrix} 5 & -3 & 5 \\ 1 & 8 & 7 \\ -56 & 3 & 21 \end{bmatrix}$$

• Square Matrix — A matrix with the same number of rows and columns

$$\mathbf{X} = \left[egin{array}{cccc} 5 & -3 & 5 \ 1 & 8 & 7 \ -56 & 3 & 21 \end{array}
ight]$$

• Symmetric Matrix — All elements above the diagonal (upper-left to lower-right) are equal (special case of the square matrix)

Square Matrix — A matrix with the same number of rows and columns

$$\mathbf{X} = \left[egin{array}{cccc} 5 & -3 & 5 \ 1 & 8 & 7 \ -56 & 3 & 21 \end{array}
ight]$$

 Symmetric Matrix — All elements above the diagonal (upper-left to lower-right) are equal (special case of the square matrix)

$$\mathbf{X} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 6 \\ 2 & 5 & 6 & 1 \end{bmatrix}$$

• Diagonal Matrix – All off-diagonal elements are 0 (special case of symmetric, and thus of the square matrix)

Diagonal Matrix – All off-diagonal elements are 0 (special case of symmetric, and thus of the square matrix)

$$\mathbf{X} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

 Diagonal Matrix – All off-diagonal elements are 0 (special case of symmetric, and thus of the square matrix)

$$\mathbf{X} = \left[\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right]$$

• Identity Matrix – Special case of the diagonal matrix, where all diagonal elements are 1. This is the matrix equivalent of the scalar 1

 Diagonal Matrix – All off-diagonal elements are 0 (special case of symmetric, and thus of the square matrix)

$$\mathbf{X} = \left[\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right]$$

• Identity Matrix – Special case of the diagonal matrix, where all diagonal elements are 1. This is the matrix equivalent of the scalar 1

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Addition and subtraction of matrices is quite simple and simply involves adding (or subtracting) the corresponding elements

- Addition and subtraction of matrices is quite simple and simply involves adding (or subtracting) the corresponding elements
- This requires that the matrices have the same number or rows *and* columns to be conformable

- Addition and subtraction of matrices is quite simple and simply involves adding (or subtracting) the corresponding elements
- This requires that the matrices have the same number or rows *and* columns to be conformable

• Given
$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$$
 and $\mathbf{Y} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$, then

- Addition and subtraction of matrices is quite simple and simply involves adding (or subtracting) the corresponding elements
- This requires that the matrices have the same number or rows *and* columns to be conformable

• Given
$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$$
 and $\mathbf{Y} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$, then
$$\mathbf{X} + \mathbf{Y} = \begin{bmatrix} x_{11} + y_{11} & x_{12} + y_{12} \\ x_{21} + y_{21} & x_{22} + y_{22} \end{bmatrix}$$

- Addition and subtraction of matrices is quite simple and simply involves adding (or subtracting) the corresponding elements
- This requires that the matrices have the same number or rows *and* columns to be conformable

• Given
$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix}$$
 and $\mathbf{Y} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$, then
$$\mathbf{X} + \mathbf{Y} = \begin{bmatrix} x_{11} + y_{11} & x_{12} + y_{12} \\ x_{21} + y_{21} & x_{22} + y_{22} \end{bmatrix}$$

• Or

$$\mathbf{X} - \mathbf{Y} = \begin{bmatrix} x_{11} - y_{11} & x_{12} - y_{12} \\ x_{21} - y_{21} & x_{22} - y_{22} \end{bmatrix}$$

Properties of (Conformable) Matrix Manipulation

Commutative Property Additive Associative Property Matrix Distributive Property Scalar Distributive Property Zero Property

$$\mathbf{X} + \mathbf{Y} = (\mathbf{Y} + \mathbf{X})$$
$$(\mathbf{X} + \mathbf{Y}) + \mathbf{Z} = \mathbf{X} + (\mathbf{Y} + \mathbf{Z})$$
$$s(\mathbf{X} + \mathbf{Y}) = s\mathbf{X} + s\mathbf{Y}$$
$$(s + t)\mathbf{X} = s\mathbf{X} + t\mathbf{X}$$
$$\mathbf{X} + 0 = \mathbf{X} \text{ and } \mathbf{X} - \mathbf{X} = 0$$

• Matrix multiplication is slightly more complicated than

addition or subtraction

- Matrix multiplication is slightly more complicated than addition or subtraction
- The principle issue is one of conformability; for two matrices to be conformable for purposes of multiplication the number of *columns* in the first matrix must be the same as the number of *rows* in the second matrix

Introduction Vectors Ocococo Matrices (Intro) Matrices (Operations) Matrices (Properties) Ocococo Matrix Multiplication

- Matrix multiplication is slightly more complicated than addition or subtraction
- The principle issue is one of conformability; for two matrices to be conformable for purposes of multiplication the number of *columns* in the first matrix must be the same as the number of *rows* in the second matrix
- This generates the second issue: the order matters. $\textbf{X}\textbf{Y}\neq\textbf{Y}\textbf{X}$

Introduction Vectors Matrices (Intro) Matrices (Operations) Matrices (Properties) 000000 Matrix Multiplication

- Matrix multiplication is slightly more complicated than addition or subtraction
- The principle issue is one of conformability; for two matrices to be conformable for purposes of multiplication the number of *columns* in the first matrix must be the same as the number of *rows* in the second matrix
- This generates the second issue: the order matters. $\mathbf{XY} \neq \mathbf{YX}$
- For example: $\underset{(k \times n)}{X} \underset{(n \times p)}{Y}$ would be valid, but $\underset{(n \times p)}{Y} \underset{(k \times n)}{X}$ would not be (unless k = p)

• In the **XY** example, the resulting matrix would be of size $k \times p$

- In the **XY** example, the resulting matrix would be of size $k \times p$
- The language we use to describe matrix multiplication reflects the importance of order.

- In the **XY** example, the resulting matrix would be of size $k \times p$
- The language we use to describe matrix multiplication reflects the importance of order.
- For this example, we would say either:
 - X pre-multiplies Y, or

- In the **XY** example, the resulting matrix would be of size $k \times p$
- The language we use to describe matrix multiplication reflects the importance of order.
- For this example, we would say either:
 - X pre-multiplies Y, or
 - Y post-multiplies X
- Formally, if we define a matrix **Z** as the product of **XY**, then

Introduction Vectors Matrices (Intro) Matrices (Operations) Matrices (Properties) 00 000000 0000 000000 000000 000000

- In the **XY** example, the resulting matrix would be of size $k \times p$
- The language we use to describe matrix multiplication reflects the importance of order.
- For this example, we would say either:
 - X pre-multiplies Y, or
 - Y post-multiplies X
- Formally, if we define a matrix **Z** as the product of **XY**, then
 - We can define each element of **Z** as $\mathbf{z}_{kp} = \sum_{n} x_{kn} y_{np}$

Introduction Vectors Matrices (Intro) Matrices (Operations) Matrices (Properties) 00 000000 0000 000000 000000 000000

- In the **XY** example, the resulting matrix would be of size $k \times p$
- The language we use to describe matrix multiplication reflects the importance of order.
- For this example, we would say either:
 - X pre-multiplies Y, or
 - Y post-multiplies X
- Formally, if we define a matrix **Z** as the product of **XY**, then
 - We can define each element of **Z** as $\mathbf{z}_{kp} = \sum x_{kn} y_{np}$
 - In words: The element in the *k*th row and the *p*th column of **Z** is obtained by multiplying the elements of the *k*th row of **X** by the corresponding elements of the *p*th column of **Y** and summing over all terms

ntroduction Vecto

s Mat 200000 ces (Intro) 0000 Matrices (Operations)

Matrices (Properties

000000

Matrix Multiplication

• In general:

$$\mathbf{XY} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$$

duction Vectors

s iviati 200000

ices (Intro) 0000 Matrices (Operations)

Matrices (Properties

000000

Matrix Multiplication

• In general:

$$\mathbf{XY} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$$
$$= \begin{bmatrix} x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} + x_{12}y_{22} \\ x_{21}y_{11} + x_{22}y_{21} & x_{21}y_{12} + x_{22}y_{22} \end{bmatrix}$$

ces (Intro) Matrices (Operations)

Matrices (Properties)

00000

000000

Matrix Multiplication

• In general:

$$\mathbf{XY} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$$
$$= \begin{bmatrix} x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} + x_{12}y_{22} \\ x_{21}y_{11} + x_{22}y_{21} & x_{21}y_{12} + x_{22}y_{22} \end{bmatrix}$$

• Numerical Example:

$$\mathbf{XY} = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right] \left[\begin{array}{cc} -2 & 2 \\ 0 & 1 \end{array} \right]$$

ices (Intro) Matrices (Operations)

Matrices (Properties)

00000

000000

Matrix Multiplication

• In general:

$$\mathbf{XY} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$$
$$= \begin{bmatrix} x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} + x_{12}y_{22} \\ x_{21}y_{11} + x_{22}y_{21} & x_{21}y_{12} + x_{22}y_{22} \end{bmatrix}$$

• Numerical Example:

$$\mathbf{XY} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -2 & 2 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} (1)(-2) + (2)(0) & (1)(2) + (2)(1) \\ (3)(-2) + (4)(0) & (3)(2) + (4)(1) \end{bmatrix}$$

Matrices (Intro) Matrices (Operations)

Matrices (Properties)

00000

000000

Matrix Multiplication

• In general:

$$\mathbf{XY} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}$$
$$= \begin{bmatrix} x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} + x_{12}y_{22} \\ x_{21}y_{11} + x_{22}y_{21} & x_{21}y_{12} + x_{22}y_{22} \end{bmatrix}$$

• Numerical Example:

$$\mathbf{XY} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -2 & 2 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} (1)(-2) + (2)(0) & (1)(2) + (2)(1) \\ (3)(-2) + (4)(0) & (3)(2) + (4)(1) \end{bmatrix}$$
$$= \begin{bmatrix} -2 & 4 \\ -6 & 10 \end{bmatrix}$$

Properties of (Conformable) Matrix Multiplication

Associative Property Additive Distributive Property Scalar Distributive Property Zero Multiplicative Property (XY)Z = X(YZ)(X + Y)Z = XZ + YZsXY = (Xs)Y = X(sY) = XYsX0 = 0

• Matrix transposition simply involves switching the rows and columns of a matrix

- Matrix transposition simply involves switching the rows and columns of a matrix
- We denote the transpose of a matrix ${\bf X}$ by ${\bf X}'$ or ${\bf X}^{\mathcal{T}}$

- Matrix transposition simply involves switching the rows and columns of a matrix
- We denote the transpose of a matrix ${\bf X}$ by ${\bf X}'$ or ${\bf X}^{\mathcal{T}}$
- And we say "X prime" or "X transpose"

- Matrix transposition simply involves switching the rows and columns of a matrix
- We denote the transpose of a matrix ${\bf X}$ by ${\bf X}'$ or ${\bf X}^{\mathcal{T}}$
- And we say "X prime" or "X transpose"
- Example:

$$\mathbf{X} = \begin{bmatrix} 2 & 3 & 5 \\ 6 & 1 & 3 \end{bmatrix} \qquad \mathbf{X}' = \begin{bmatrix} 6 & 2 \\ 1 & 3 \\ 3 & 5 \end{bmatrix}$$

(Intro)

atrices (Operations)

Matrices (Properties)

000000

Properties of Matrix Transposition

Invertability Additive Property Multiplicative Property General Multiplicative Property (X')' = X(X + Y)' = X' + Y'(XY)' = Y'X' $(X_1X_2...X_{n-1}X_n)'$ $= X'_nX'_{n-1}...X'_2X'_1$

• The inverse of a matrix is similar conceptually to the inverse of a scalar

- The inverse of a matrix is similar conceptually to the inverse of a scalar
- Not all matrices have a inverse. Specifically, only some, *square* matrices have an inverse

- The inverse of a matrix is similar conceptually to the inverse of a scalar
- Not all matrices have a inverse. Specifically, only some, *square* matrices have an inverse
- We denote the inverse of a matrix **X** as **X**⁻¹ and define it with the following property:

- The inverse of a matrix is similar conceptually to the inverse of a scalar
- Not all matrices have a inverse. Specifically, only some, *square* matrices have an inverse
- We denote the inverse of a matrix **X** as **X**⁻¹ and define it with the following property:

•
$$XX^{-1} = X^{-1}X = I$$

- The inverse of a matrix is similar conceptually to the inverse of a scalar
- Not all matrices have a inverse. Specifically, only some, *square* matrices have an inverse
- We denote the inverse of a matrix **X** as **X**⁻¹ and define it with the following property:

•
$$XX^{-1} = X^{-1}X = I$$

• Example:

$$\left[\begin{array}{cc}1&2\\3&4\end{array}\right]\left[\begin{array}{cc}-2&1\\1.5&-0.5\end{array}\right]=\left[\begin{array}{cc}-2&1\\1.5&-0.5\end{array}\right]\left[\begin{array}{cc}1&2\\3&4\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]$$

• A useful, but difficult to calculate, summary measure of a matrix is known as the determinant

- A useful, but difficult to calculate, summary measure of a matrix is known as the determinant
- The determinant utilizes all the values and provide a summary of the structure of the matrix

- A useful, but difficult to calculate, summary measure of a matrix is known as the determinant
- The determinant utilizes all the values and provide a summary of the structure of the matrix
- A determinant exists for all square matrices and in denoted as $\det(\textbf{X})$ or |X|

• For the case of a 2 × 2, calculating the determinant is relatively simple:

• For the case of a 2 × 2, calculating the determinant is relatively simple:

$$\det(\mathbf{X}) = |\mathbf{X}| = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = x_{11}x_{22} - x_{12}x_{21}$$

• For the case of a 2 x 2, calculating the determinant is relatively simple:

$$\det(\mathbf{X}) = |\mathbf{X}| = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = x_{11}x_{22} - x_{12}x_{21}$$

• Moving to larger matrices, the process of calculating a determinant become significantly more complex

• For the case of a 2 x 2, calculating the determinant is relatively simple:

$$\det(\mathbf{X}) = |\mathbf{X}| = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = x_{11}x_{22} - x_{12}x_{21}$$

- Moving to larger matrices, the process of calculating a determinant become significantly more complex
- And involves the defining of submatrices created by deleting specific rows and columns.

• For the case of a 2 × 2, calculating the determinant is relatively simple:

$$\det(\mathbf{X}) = |\mathbf{X}| = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} = x_{11}x_{22} - x_{12}x_{21}$$

- Moving to larger matrices, the process of calculating a determinant become significantly more complex
- And involves the defining of submatrices created by deleting specific rows and columns.
- Thankfully, modern technology has largely elemented the need to hand-calculate determinants.