M	F.	VS	15

A Few Distribution

Mechanics

Analytical Solution

00000000

000000

00000

Maximum Likelihood Estimation (MLE)

Week 4 POLS 8830: Advanced Quantitative Methods

> Ryan Carlin Georgia State University rcarlin@gsu.edu

Presentations are the property of Michael Fix for use in 8830 lectures. Not to be photographed, replicated, or disseminated without express permission.

ML	E.			I C	
IVIL		vs	U	L3	

.00

Mechanics

Analytical Solution

0000000

000000

00000

Maximum Likelihood Estimation (MLE)

• Take the classic linear regression model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \tag{1}$$

 Under all the assumptions of the CLRM, taking the partial derivative of equation [1] with respect to x_k yields:

$$\frac{\partial E(\mathbf{y}|\mathbf{X})}{\partial \mathbf{x}_{\mathbf{k}}} = \frac{\partial \mathbf{X}\beta}{\partial \mathbf{x}_{\mathbf{k}}} = \beta_k$$
(2)

000

Mechanics

Analytical Solution

00000000

000000

00000

Maximum Likelihood Estimation (MLE)

- In the CLRM, the partial derivative helps calculate the slope coefficient for *each* independent variable, holding everything else constant.
- Two important differences between LRM and non-linear models (such as MLE):
 - First, the partial derivative in equation [2] only depends on the value of β_k and nothing else
 - In non-linear models (such as MLE) $\frac{\partial E(\mathbf{y}|\mathbf{X})}{\partial \mathbf{x}_k}$ is influenced by the value of \mathbf{x}_k and also the values of all the other independent variables in the model.

MLE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	0000000	000000	00000

Maximum Likelihood Estimation (MLE)

- Second, in the CLRM, taking the partial derivative boils down to measuring the discrete change in $\mathbf{x}_{\mathbf{k}}$ and the corresponding change in \mathbf{y} .
 - In non-linear models, $\frac{\partial E(\mathbf{y}|\mathbf{X})}{\partial \mathbf{x}_{\mathbf{k}}}$ is not simply measuring the discrete change in $\mathbf{x}_{\mathbf{k}}$ and the corresponding change in \mathbf{y} .
- Therefore, the major differences between OLS and MLE:
 - ML estimates do **NOT** reflect a deterministic behavior with an attached error term
 - Rather, ML estimates follow a distribution of possible behaviors
 - Determining the appropriate distribution for y (and by extension for ε) is critical to MLE, and is often highly subjective.
 - In other words, it is a critical and often unstated assumption.

E vs OLS	A Few Distributions	Mechanics	Analytical Solution
)	●0000000	000000	00000

Some Notes on Distributions

- Given the importance of selecting the appropriate distribution, the question becomes how to select from among the dozens of known statistical distributions
- Information about our dependent variable helps us narrow down our choices to a given family of distributions:
 - Is the dependent variable continuous or discrete?
 - Is the depend value truncated a a given value (e.g. 0)
- Our choice of distribution reflects (in part) our level of uncertainty about the functional form of the relationship between **X** and the **y**.
- This is an important decision that requires careful thought, examination of various plots and other preliminary data analysis techniques, and knowledge of the nature of the dependent variable.

LE vs OLS	A Few Distributions	Mechanics	Analytical Solution
00	0000000	0000000	00000

Bernoulli Distribution

- This is the simplest statistical distribution
- Represents the situation where a random variable (y) has only two possible event outcomes, each with a non-zero probability of occurrence
- Example: flipping a coin
- $\Pr(y_i = 1) = \pi$ and $\Pr(y_i = 0) = 1 \pi$.
- Formally, we represent the distribution:

$$y_i \sim f_{Bern}(y_i|\pi) = \pi^{y(1-\pi)(1-y)}$$

e vs OLS	A Few Distributions	Mechanics	Analytical Solution
	0000000	000000	00000

Binomial Distribution

- This is a series of *N* Bernoulli random variables, where we only observe the sum of the observations
- The distribution is nonnegative and discrete (no fractions), with an upper bound of *n*
- Examples: the number of bills in a legislature, number of cases on a court's docket
- Mathematical specification:

$$f_{k,n,p} = \binom{n}{k} p^k (1-p)^{(n-k)}$$

• where:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

E vs OLS	A Few Distributions	Mechanics	Analytical Solution
0	0000000	000000	00000

Normal Distribution

- Most intuitively familiar distribution (pdf froms the familiar "bell-shaped" curve)
- Used in OLS regression models
- Somewhat difficult to employ in MLE, because it does not possess an analytic solution
 - Analytic solution requires computing integrals
 - Computationally, the mathematics underlying this distribution were too complex for early computers
- Mathematical specification:

$$y_i \sim \mathcal{N}(y_i|\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{1}{2}\left[rac{(y-\mu)^2}{\sigma^2}
ight]}$$

MLE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	0000000	0000000	00000

Logistic Distribution

- Better adept at modeling probabilities for dichotomous outcomes than the Normal distribution
- Contains an analytic solution (e.g. is mathematical tractable)
- Low computational costs (can even be done by hand)
- Mathematical specification:

$$y_i \sim f_{Logistic}(y_i | \mathbf{X} eta) = rac{e^{\mathbf{X}eta}}{1 + e^{\mathbf{X}eta}}$$

MLE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	00000000	000000	00000

Poisson Distribution

- Used when dependent variable is a count with no upper bound
- Key assumption: Occurrence of one event has no influence on the expected number of subsequent events (λ)
- Mathematical specification:

$$y_i \sim f_{Poisson}(y_i|\lambda) = rac{e^{-\lambda}\lambda^{y_i}}{y_i!}$$

• where
$$\lambda > 0$$
 and $y_i = 0, 1, 2, \dots$

LE vs OLS	A Few Distributions	Mechanics	Analytical Solution
00	00000000	0000000	00000

Negative Binomial Distribution

- Two key assumptions about the Poisson distribution are often problematic:
 - That events accumulating during observation period *i* are independent
 - Events have a constant rate of occurrence
- If either assumption is violated, then a new distribution is required because λ is no longer constant for all observations
 - Instead, must assume that λ itself varies across observations according to a particular probability distribution
 - The most popular distribution for λ is the gamma distribution
 - This involves calculating another parameter in the equation the variance of the distribution

MLE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	0000000	0000000	00000

Negative Binomial Distribution

• Mathematical specification:

$$y_i \sim f_{nb}(y_i|\lambda,\sigma^2) = \frac{\Gamma\left(\frac{\lambda}{\sigma^2-1}+y_i\right)}{y_i!\Gamma\left(\frac{\lambda}{\sigma^2-1}\right)} \left(\frac{\sigma^2-1}{\sigma^2}\right) y_i(\sigma^2)^{\frac{-\lambda}{\sigma^2-1}}$$

- where $\lambda > 0$ and $\sigma^2 > 0$.
- Note: the more events within observation *i* that are positively related, the larger σ^2 becomes. Also, as σ^2 approaches 0, the negative binomial distribution collapses into the Poisson distribution

1.4			0	0
IVI	LE	VS	O	LS

Mechanics

Analytical Solution

00000000

•000000

00000

Calculating a Maximum Likelihood

- Calculating a maximum likelihood refers to the joint probability that the observations included in a dataset could have been selected randomly *given the true state of the world*
- Stated another way, the likelihood involves estimating the chance that our dataset would have been selected, as opposed to another dataset with different observations *given the true state of the world*
- Similar to calculating specific probabilities but with increased uncertainty
- Remember, we are estimating the likelihood of the entire dataset, not a single observation
- Assuming that the observations are independently and identically distributed (i.i.d.) then the probability of a joint event is the product of the probability of each single event

MLE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	0000000	000000	00000

- Assume that we observe one of two possible events: an individual turned out to vote or not
- Voter turnout 1 = yes and 0 = no
- To calculate the maximum likelihood we must first select the appropriate probability distribution
- In this case the Binomial distribution is appropriate because we have multiple observations (or trials) of a dependent variable with only two outcomes
- We can refer to turnout with the parameter *p*
- 1 = p and 0 = 1 p

MLE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	0000000	000000	00000

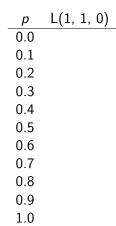
- We can calculate the maximum likelihood of observing 3 individuals, 2 of whom turned out to vote
- Observed data is 1,1,0
- One method of calculation is a grid search
- $L \propto \Pr(y|\Theta)$
- where L = likelihood and $\Theta = parameter of interest$
- This is read as "the likelihood of observing our data is proportional to the probability of y given $\Theta^{\prime\prime}$

MLE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	0000000	000000	00000
	An Exa	mple	

- Calculating a grid search
- Arbitrarily select values for the unknown parameter and calculate the joint probability of observing the data
- Refine calculations until maximum probability is determined

MLE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	0000000	0000000	00000

An Example



MLE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	0000000	0000000	00000

An Example

р	L(1, 1, 0)
0.0	0
0.1	.027
0.2	.096
0.3	.189
0.4	.288
0.5	.375
0.6	.432
0.7	.441
8.0	.384
0.9	.243
1.0	0

MLE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	0000000	000000	00000

An Example

р	L(1, 1, 0)
0.0	0
0.1	.003
0.2	.096
0.3	.189
0.4	.288
0.5	.375
0.6	.432
0.7	.441
0.8	.384
0.9	.243
1.0	0

ILE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	0000000	0000000	
			00000

• The theory of MLE rests on the ability to estimate the probability that a given population (reflected in assumptions regarding the distribution) produced the matrix of observations

$$egin{aligned} \mathcal{L}(\Theta|y) &= k(y) \operatorname{\mathsf{Pr}}(y|\Theta) \ &\propto \operatorname{\mathsf{Pr}}(y|\Theta) \end{aligned}$$

• where k is a constant which translates into the likelihood function measuring relative uncertainty

MLE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	0000000	000000	0000

- Example: calculate the likelihood of observing presidential vetoes of legislation
- Step 1: select the appropriate probability distribution
 - In this case, since we are dealing with count data, the Poisson distribution is appropriate
- The Poisson distribution

$$y_i \sim f_{Poisson}(y_i|\lambda) = rac{e^{-\lambda}\lambda^{y_i}}{y_i!}$$

- Remember that the likelihood involves calculating the joint probability
 - Assuming the data are i.i.d. then this involves the product of all individual probabilities

MLE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	0000000	0000000	0000

$$L \propto \prod_{i=1}^{N} \frac{e^{-\lambda} \lambda^{y_i}}{y_i!}$$
(3)

- How do you evaluate the product of observations?
- Calculating the mathematics of a product is extremely complicated
- However, one can take the log of equation [3] and calculate the log-likelihood, which simplifies the mathematics
- Note: taking the log also means that the β coefficients are calculated from the log-likelihood which is not interpretable

MLE vs OLS	A Few Distributions	Mechanics	Analytical Solution
000	0000000	000000	00000
			000000

Step 1: Distribute:

$$\frac{e^{-n\lambda}\lambda^{\sum y_i}}{\prod y_i!} \tag{4}$$

• Step 2: Take the natural log: $\ln L = -N\lambda + \sum y_i \ln \lambda - \sum \ln y_i! \quad (5)$

 Step 3: Take the partial derivative with respect to the single unknown parameter (λ):

$$\frac{\partial \ln L}{\partial \lambda} = -N + \frac{\sum y_i}{\lambda}$$
 (6)

• Step 4: Set equal to 0 and solve:

$$\lambda = \frac{\sum y_i}{N} \tag{7}$$

E vs OLS	A Few Distributions	Mechanics	Analytical Solution
2	0000000	000000	0000●

Notes on Analytical Solutions

- The first derivative provides information about the slope of a line running tangential to the likelihood curve at its most sensitive location
- The second derivative provides information on how fast the slope of that tangential line is changing along the curve
- The second derivative is known as the Hessian Matrix, the inverse of which is used to calculate standard errors