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Maximum Likelihood Estimation (MLE)

• Take the classic linear regression model:

y = Xβ + ε (1)

• Under all the assumptions of the CLRM, taking the partial
derivative of equation [1] with respect to xk yields:

∂E (y|X)

∂xk
=
∂Xβ

∂xk
= βk (2)



MLE vs OLS A Few Distributions Mechanics Analytical Solution

Maximum Likelihood Estimation (MLE)

• In the CLRM, the partial derivative helps calculate the slope
coefficient for each independent variable, holding everything
else constant.

• Two important differences between LRM and non-linear
models (such as MLE):
• First, the partial derivative in equation [2] only depends on the

value of βk and nothing else

• In non-linear models (such as MLE)
∂E (y|X)

∂xk
is influenced by

the value of xk and also the values of all the other independent
variables in the model.
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Maximum Likelihood Estimation (MLE)

• Second, in the CLRM, taking the partial derivative boils down
to measuring the discrete change in xk and the corresponding
change in y.

• In non-linear models,
∂E (y|X)

∂xk
is not simply measuring the

discrete change in xk and the corresponding change in y.

• Therefore, the major differences between OLS and MLE:
• ML estimates do NOT reflect a deterministic behavior with an

attached error term
• Rather, ML estimates follow a distribution of possible behaviors
• Determining the appropriate distribution for y (and by

extension for ε) is critical to MLE, and is often highly
subjective.

• In other words, it is a critical — and often unstated —
assumption.
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Some Notes on Distributions

• Given the importance of selecting the appropriate distribution,
the question becomes how to select from among the dozens of
known statistical distributions

• Information about our dependent variable helps us narrow
down our choices to a given family of distributions:
• Is the dependent variable continuous or discrete?
• Is the depend value truncated a a given value (e.g. 0)

• Our choice of distribution reflects (in part) our level of
uncertainty about the functional form of the relationship
between X and the y.

• This is an important decision that requires careful thought,
examination of various plots and other preliminary data
analysis techniques, and knowledge of the nature of the
dependent variable.



MLE vs OLS A Few Distributions Mechanics Analytical Solution

Bernoulli Distribution

• This is the simplest statistical distribution

• Represents the situation where a random variable (y) has only
two possible event outcomes, each with a non-zero probability
of occurrence

• Example: flipping a coin

• Pr(yi = 1) = π and Pr(yi = 0) = 1− π.

• Formally, we represent the distribution:

yi ∼ fBern(yi |π) = πy(1−π)(1−y)
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Binomial Distribution
• This is a series of N Bernoulli random variables, where we

only observe the sum of the observations

• The distribution is nonnegative and discrete (no fractions),
with an upper bound of n

• Examples: the number of bills in a legislature, number of
cases on a court’s docket

• Mathematical specification:

fk,n,p =

(
n

k

)
pk(1− p)(n−k)

• where: (
n

k

)
=

n!

k!(n − k)!
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Normal Distribution

• Most intuitively familiar distribution (pdf froms the familiar
“bell-shaped” curve)

• Used in OLS regression models

• Somewhat difficult to employ in MLE, because it does not
possess an analytic solution
• Analytic solution requires computing integrals
• Computationally, the mathematics underlying this distribution

were too complex for early computers

• Mathematical specification:

yi ∼ N (yi |µ, σ2) =
1√

2πσ2
e
− 1

2

[
(y−µ)2

σ2

]
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Logistic Distribution

• Better adept at modeling probabilities for dichotomous
outcomes than the Normal distribution

• Contains an analytic solution (e.g. is mathematical tractable)

• Low computational costs (can even be done by hand)

• Mathematical specification:

yi ∼ fLogistic(yi |Xβ) =
eXβ

1 + eXβ
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Poisson Distribution

• Used when dependent variable is a count with no upper bound

• Key assumption: Occurrence of one event has no influence on
the expected number of subsequent events (λ)

• Mathematical specification:

yi ∼ fPoisson(yi |λ) =
e−λλyi

yi !

• where λ > 0 and yi = 0, 1, 2, . . .



MLE vs OLS A Few Distributions Mechanics Analytical Solution

Negative Binomial Distribution

• Two key assumptions about the Poisson distribution are often
problematic:
• That events accumulating during observation period i are

independent
• Events have a constant rate of occurrence

• If either assumption is violated, then a new distribution is
required because λ is no longer constant for all observations
• Instead, must assume that λ itself varies across observations

according to a particular probability distribution
• The most popular distribution for λ is the gamma distribution
• This involves calculating another parameter in the equation —

the variance of the distribution
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Negative Binomial Distribution

• Mathematical specification:

yi ∼ fnb(yi |λ, σ2) =
Γ
(

λ
σ2−1

+ yi

)
yi !Γ

(
λ

σ2−1

) (
σ2 − 1

σ2

)
yi (σ

2)
−λ

σ2−1

• where λ > 0 and σ2 > 0.

• Note: the more events within observation i that are positively
related, the larger σ2 becomes. Also, as σ2 approaches 0, the
negative binomial distribution collapses into the Poisson
distribution
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Calculating a Maximum Likelihood
• Calculating a maximum likelihood refers to the joint

probability that the observations included in a dataset could
have been selected randomly given the true state of the world

• Stated another way, the likelihood involves estimating the
chance that our dataset would have been selected, as opposed
to another dataset with different observations given the true
state of the world

• Similar to calculating specific probabilities but with increased
uncertainty

• Remember, we are estimating the likelihood of the entire
dataset, not a single observation

• Assuming that the observations are independently and
identically distributed (i.i.d.) then the probability of a joint
event is the product of the probability of each single event
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An Example

• Assume that we observe one of two possible events: an
individual turned out to vote or not

• Voter turnout 1 = yes and 0 = no

• To calculate the maximum likelihood we must first select the
appropriate probability distribution

• In this case the Binomial distribution is appropriate because
we have multiple observations (or trials) of a dependent
variable with only two outcomes

• We can refer to turnout with the parameter p

• 1 = p and 0 = 1− p
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An Example

• We can calculate the maximum likelihood of observing 3
individuals, 2 of whom turned out to vote

• Observed data is 1,1,0

• One method of calculation is a grid search

• L ∝ Pr(y |Θ)

• where L = likelihood and Θ = parameter of interest

• This is read as “the likelihood of observing our data is
proportional to the probability of y given Θ”
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An Example

• Calculating a grid search

• Arbitrarily select values for the unknown parameter and
calculate the joint probability of observing the data

• Refine calculations until maximum probability is determined
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An Example

p L(1, 1, 0)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
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An Example

p L(1, 1, 0)

0.0 0
0.1 .027
0.2 .096
0.3 .189
0.4 .288
0.5 .375
0.6 .432
0.7 .441
0.8 .384
0.9 .243
1.0 0
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An Example

p L(1, 1, 0)

0.0 0
0.1 .003
0.2 .096
0.3 .189
0.4 .288
0.5 .375
0.6 .432
0.7 .441
0.8 .384
0.9 .243
1.0 0
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Finding an Analytical Solution

• The theory of MLE rests on the ability to estimate the
probability that a given population (reflected in assumptions
regarding the distribution) produced the matrix of
observations

L(Θ|y) = k(y) Pr(y |Θ)

∝ Pr(y |Θ)

• where k is a constant which translates into the likelihood
function measuring relative uncertainty
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Finding an Analytical Solution

• Example: calculate the likelihood of observing presidential
vetoes of legislation

• Step 1: select the appropriate probability distribution
• In this case, since we are dealing with count data, the Poisson

distribution is appropriate

• The Poisson distribution

yi ∼ fPoisson(yi |λ) =
e−λλyi

yi !

• Remember that the likelihood involves calculating the joint
probability
• Assuming the data are i.i.d. then this involves the product of

all individual probabilities
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Finding an Analytical Solution

L ∝
N∏
i=1

e−λλyi

yi !
(3)

• How do you evaluate the product of observations?

• Calculating the mathematics of a product is extremely
complicated

• However, one can take the log of equation [3] and calculate
the log-likelihood, which simplifies the mathematics

• Note: taking the log also means that the β coefficients
are calculated from the log-likelihood which is not
interpretable
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Finding an Analytical Solution
• Step 1: Distribute:

e−nλλ
∑

yi∏
yi !

(4)

• Step 2: Take the natural log:

ln L = −Nλ+
∑

yi lnλ−
∑

ln yi ! (5)

• Step 3: Take the partial derivative with respect to the single
unknown parameter (λ):

∂ ln L

∂λ
= −N +

∑
yi
λ

(6)

• Step 4: Set equal to 0 and solve:

λ =

∑
yi

N
(7)
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Notes on Analytical Solutions

• The first derivative provides information about the slope of a
line running tangential to the likelihood curve at its most
sensitive location

• The second derivative provides information on how fast the
slope of that tangential line is changing along the curve

• The second derivative is known as the Hessian Matrix, the
inverse of which is used to calculate standard errors
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