raction Terms

Predicted Probabilities

00000000000

Presenting Substantive Results in Meaningful Ways

Week 6 POLS 8830: Advanced Quantitative Methods

Ryan Carlin Georgia State University rcarlin@gsu.edu

Presentations are the property of Michael Fix for use in 8830 lectures. Not to be photographed, replicated, or disseminated without express permission.

Interaction Terms

00000000

Predicted Probabilities

00000000000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

'Normal' Research in Political Science Today

- 1. Research as quest for significance
- 2. Overload reader with information
 - Create a giant table of numbers
 - Apply stars generously
- 3. Eschew 'better' ways of presenting results for fear of violating orthodox teachings

000000000000

Problem 1: Significance(?) Testing

- What? Treating classic null hypothesis significance testing as if it were Bayesian
- Why? A willful ignorance or intentional amnesia of what classic hypothesis testing actually does
- Read Gill (1999) for more info.

000000000000

Problem 2: Stargazing vs Substance

- What? Presentation of results that focuses on (arbitrary) statistical significance rather than substantive importance
 - Why? Laziness? Ignorance? Lack of anything substantively meaningful to talk about?

000000000000

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Problem 2: Stargazing vs Substance

- What? Presentation of results that focuses on (arbitrary) statistical significance rather than substantive importance
 - Why? Laziness? Ignorance? Lack of anything substantively meaningful to talk about?

Note. The tongue-in-cheek naming of our preferred output function.

000000000000

Problem 3: Orthodoxy vs Evolution

- What? A failure to utilize modern technology to improve the presentation of statistical results
 - Why? Constraints due to 1920s technology became ingrained in our culture and maintained without logical or mathematical reason

Interaction Terms

00000000

Predicted Probabilities

000000000000

Advantages of Graphs

- Increased aesthetic appeal
- Provide clear comparisons
- Are more intuitive to interpret than tables
- Allow the reader to make an informed decision on the data
- Can show confidence measures more intuitively than tables

000000

Interaction Terms

0000000

Predicted Probabilities

000000000000

Advantages of Tables

• Precision (maybe?)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Plots and Graphs Can Replace Nearly Any Table

- As the Kastellec and Leoni article illustrates, in just about any circumstance in which we might want a table, we can instead use a graph or plot
- What are the trade offs?
- Compare the following visuals

0000000

Interaction Terms

00000000

Predicted Probabilities

00000000000

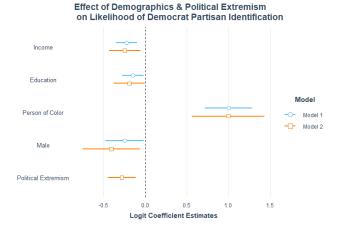
Option 1

Table: Effect of Demographics and Political Extremism on Likelihood of Democrat Partisan Identification.

-0.196^{***}	-0.217^{**}
(0.057)	(0.085)
-0.165^{**}	-0.216**
(0.072)	(0.107)
1.002***	0.999***
(0.147)	(0.223)
-0.249**	-0.407**
(0.117)	(0.174)
	-0.300***
	(0.092)
1.240***	2.166***
(0.226)	(0.381)
1,316	630
-847.830	-391.977
88.837 ***	61.728 ***
0.093	0.083
*p<0.1; **p<0.05; ***p<0.01	
	$(0.057) \\ -0.165^{**} \\ (0.072) \\ 1.002^{***} \\ (0.147) \\ -0.249^{**} \\ (0.117) \\ 1.240^{***} \\ (0.226) \\ 1.316 \\ -847.830 \\ 88.837 \\ *** \\ 0.093 \\ (0.93) \\ (0.957)$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

0000000


Interaction Term

00000000

Predicted Probabilities

00000000000

Option 2

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

0000000

00000000

Predicted Probabilities

00000000000

Another Example: Option 1

Table: Effect of Title, Tenure, and Gender on Professor's Salaries

	OLS	GLM
Associate Professor	12,907.590***	12,907.590***
	(2,240.184)	(2,240.184)
Full Professor	45,066.000***	45,066.000***
	(3,325.489)	(3,325.489)
Discipline	14,417.630***	14,417.630***
	(2,334.130)	(2,334.130)
Years Since PhD	535.058*	535.058*
	(319.678)	(319.678)
Years of Service	-489.516	-489.516
	(313.939)	(313.939)
Male	4,783.493*	4,783.493*
	(2,456.576)	(2,456.576)
Constant	65,955.230***	65,955.230***
	(2,953.152)	(2,953.152)
Observations	397	397
R ²	0.455	
Adjusted R ²	0.446	
Log Likelihood		-4,539.913
Akaike Inf. Crit.		9,093.826
Residual Std. Error	22,538.650 (df = 390)	
F Statistic	54.195^{***} (df = 6; 390)	
Note:	*p<0.1; **p<0.05; ***p<0.01	

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

000000

Interaction Terms

00000000

Predicted Probabilities

00000000000

Another Example: Option 2

Effect of Professor Rank on Salary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ●

Interaction Terms

•0000000

Predicted Probabilities

00000000000

Interaction Terms

- The use of interaction terms in applied political science research is quite common
- Unfortunately, the misuse of interaction terms is nearly as common
 - What is an interaction (or multiplicative term)? And how to we properly model it?
 - How do we interpret the results?
 - According to Brambor, Clark, and Golder what are some of the most common problems?

Interaction Terms

0000000

Predicted Probabilities

000000000000

Interaction Terms

- Key points to remember:
 - 1. Include all constitutive terms
 - 2. Do not incorrectly interpret constitutive terms
 - 3. Calculate and present meaning quantities of interest

000000000000

Interaction Terms

00000000

- Often we have hypotheses that involve a conditional relationship between two independent variables and the dependent variable
- However, when modeling this we must model the two constitutive terms in addition to the interactions term

• E.g.
$$y = X_1\beta_1 + X_2\beta_2 + X_1X_2\beta_3 + \epsilon$$

NOT

•
$$y = X_1 X_2 \beta_* + \epsilon$$

00000000

Predicted Probabilities

000000000000

Interaction Terms

- Given the correct specification:
- $y = X_1\beta_1 + X_2\beta_2 + X_1X_2\beta_3 + \epsilon$
- We must remember that we cannot interpret the coefficient on the constitutive terms as unconditional effect
- In the above example, we cannot interpret β_1 as the effect of X_1 on y, rather we can only interpret it as the effect of X_1 on y when $X_2 = 0$

Interaction Terms

00000000

Predicted Probabilities

000000000000

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Interaction Terms

• In R, this is specified as:

$$\label{eq:simple} \begin{split} \mathsf{gIm}(\mathsf{DV} &\sim \mathsf{IV1} * \mathsf{IV2}, \, \dots) \\ & & \quad \mathsf{not} \\ \mathsf{gIm}(\mathsf{DV} &\sim \mathsf{IV1} : \, \mathsf{IV2}, \, \dots) \end{split}$$

Interaction Terms

00000000

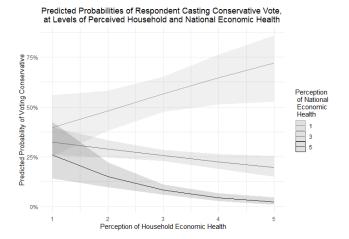
Predicted Probabilities

00000000000

Interaction Terms

- The best way to present meaningful quantities of interest from interactive models is through graphs
- This requires you to go beyond the built in point-and-click approaches in R
- However, a number of individuals have made it relatively easy to do so

00000000


Predicted Probabilities

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

0000000

00000000000

Graphing Interaction Terms: An Example

Graphs	

000000000000

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Graphing Interaction Terms

- R has multiple packages for plotting interaction terms
- ggplot2, jtools, sjplot, margins, etc.
- Most are simplifications and/or direct implementations of ggplot
- margins seeks to emulate the marginsplot command from STATA

•0000000000

Predicted Probabilities

- Allows us to generate numerical estimates of the probability that *y* = 1 holding the other variables constant
 - We can then adjust the variable of interest across various levels and observe the corresponding change in the predicted probability
- Advantage of Predicted Probabilities
 - Flexibility to calculate ANY desired effect for a single independent variable
- Disadvantage
 - Somewhat more complicated to calculate

00000000

Predicted Probabilities

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

00000000000

Margins: Introduction

- From the STATA documentation
 - "The margins command estimates margins of responses for specified values of covariates and presents the results as a table."
 - "Capabilities include estimated marginal means, least-squares means, average and conditional marginal and partial effects (which may be reported as derivatives or as elasticities), average and conditional adjusted predictions, and predictive margins."
- the margins implementation in R seeks to mirror these functions and are, largely, calculated identically

00000000

Predicted Probabilities

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Margins: Introduction

• From the margins (R) documentation

 "These tools provide ways of obtaining common quantities of interest from regression-type models. margins provides "marginal effects" summaries of models and prediction provides unit-specific and sample average predictions from models. ... margins therefore provides ways of calculating the marginal effects of variables to make these models more interpretable"

00000000

Predicted Probabilities

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Margins: Introduction

• From the margins (R) documentation

- "These tools provide ways of obtaining common quantities of interest from regression-type models. margins provides "marginal effects" summaries of models and prediction provides unit-specific and sample average predictions from models. ... margins therefore provides ways of calculating the marginal effects of variables to make these models more interpretable"
- Predictive margins rely on the prediction package in R

00000000

Predicted Probabilities

Margins: Procedure

- The general syntax is:
- model_object $< \operatorname{glm}(\operatorname{IV1} + \operatorname{IV2} \dots)$
 - Basic glm/lm estimation
- margins(model_object)
- A large number of options from this basic syntax

00000000

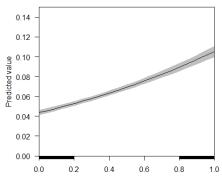
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Margins: Key Options

- The most important options (functionally) are:
- margins(model_object, ...
 - variables = c("IV1", "IV2")
 - variables tell margins which covariates to vary when calculating marginal effect/predicted probabilities, all others are held at their means
 - at = list(IV1=#:#)
 - Specifying the covariate values at which to calculate the marginal effects/predicted probabilities
 - Where # are lower and upper bounds generally the limits of the IV

Interaction Terms

00000000


Predicted Probabilities

000000000000

同下 イヨト イヨト ヨー のへつ

Margins: Plotting

- Key command for graphs is cplot()
- cplot(model object, x="IV", ...)
 - Where x="IV" sets the x axis as the covariate's influence you want to plot

Predicted Probability of Car Search Based on Race

Race

Interaction Terms

00000000

Predicted Probabilities

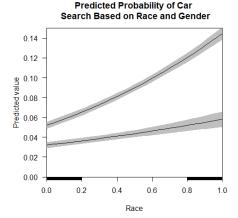
000000000000

Margins: Plotting

- Plotting interactions is a bit more complex
- Need to subset the data and combine the plots with draw = "add"
 - object1<-cplot(model_object, x="IV1", data=df[df[["IV2"]]==0,])
 - object2<-cplot(model_object, x="IV1", data=df[df[["IV2"]]==1,], draw = "add")

Interaction Term

00000000


Predicted Probabilities

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

0000000000000

Margins: Plotting

• Which yields:

Note: See the tutorial for the full code

P

0000000

200000

Predicted Probabilities

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

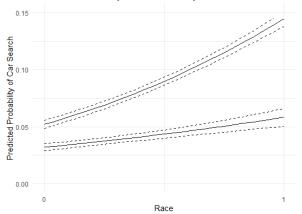
000000000000

Margins: Plotting

- A more flexible, and better looking option is to use the predictions from the cplot command to build a ggplot object
 - cd1<-cplot(model_object, x="IV1", data=df[mStops[["IV2"]]==0,])
 - cd2<-cplot(model_object, x="IV1", data=df[mStops[["IV2"]]==1,])
 - ggplot(cd1, aes(x = xvals)) + geom_line(aes(y = yvals)) + geom_line(aes(y = upper), linetype = 2) + geom_line(aes(y = lower), linetype = 2) + geom_line(data=cd2, aes(y=yvals)) + geom_line(data=cd2, aes(y=upper), linetype = 2) + geom_line(data=cd2, aes(y=lower), linetype = 2)

Interaction Term

0000000


Predicted Probabilities

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

0000000000

Margins: Plotting

Predicted Probability of Car Search by Race and Gender

0000000000

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Predicted Probabilties: Conclusion

- There are a ton of different options for graphs in R, especially with interactions and predicted probabilities more than can be covered here
- Look at the tutorial for some options
- See https://cran.r-project.org/web/packages/ margins/vignettes/Introduction.html for a full discussion of the margins package