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Development of Ordinal Models

• Types of variables:

1. Interval
2. Ratio
3. Ordinal
4. Nominal

• Originally OLS was used to estimate models with ordinal
dependent variables

• Assumes a latent variable underlying the observed categories
of the dependent variable
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Example of Ordinal Variable

• Evaluation of the economy:

1. Much Worse — 45%
2. Somewhat Worse — 30%
3. No Change — 12 %
4. Somewhat Better — 8%
5. Much Better — 5%

• Consider a latent (unobserved) variable (y∗) the measures
‘real’ evaluations of the economy on a scale for −∞ to ∞
• Working on the assumption that our observed values for
y = 1, 2, 3, 4, 5 reflect the unobserved y∗ we can estimate
with OLS
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Example of Ordinal Variable

• To do this we map the observe values of y onto the
continuous (theoretical) scale of y∗ based on cutpoints
between the categories

yi =


1 Much Worse if −∞ ≤ y∗ < τ1
2 Somewhat Worse if τ1 ≤ y∗ < τ2
3 No Change if τ2 ≤ y∗ < τ3
4 Somewhat Better if τ3 ≤ y∗ < τ4
5 Much Better if τ4 ≤ y∗ < ∞
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Using OLS to Estimate Latent y ∗

• Using OLS to estimate models with ordinal dependent
variables is NOT problematic based on the above logic if two
assumptions are met:

1. The distance between categories is equal
2. The variance across categories is constant

• Both of these are pretty strong assumptions

• Ordered logit/probit models allow us to estimate the location
of the cutpoints (τ) while relaxing the strong assumption the
distance between categories must be equal

• However, in practice the ordered probit/logit models converge
to OLS when the dependent variable contains more than 5
categories. (We should NOT assume this. More on how to
test for it later.)
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Using OLS to Estimate Latent y ∗
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Ordered Logit/Probit

• Instead of assuming that y∗ is a continuous variable, we can:

• Assume that the observed variable y contains observations
drawn from a probability distribution

• This probability distribution extends across each value of y



Ordinal Models Estimation Interpretation

Ordered Logit/Probit
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Ordered Logit/Probit

• Begin by estimating the probability that y = 1

Pr(y1 = 1|Xi ) = Pr(τ0 ≤ y∗i < τ1|Xi ) (1)

• Since the underlying latent variable y∗ is unobservable, we
substitute the predicted regression line Xβ + ε

Pr(y1 = 1|Xi ) = Pr(τ0 ≤ Xβ + ε < τ1|Xi ) (2)

• Subtracting Xβ within the inequality helps identify specific
cutpoints

Pr(y1 = 1|Xi ) = Pr(τ0 − Xβ ≤ +ε < τ1 − Xβ|Xi ) (3)
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Ordered Logit/Probit

• Equation 3 specifies that the probability of a random variable
(y) taking a specific value (e.g. y = 1) can be calculated by
determining whether y falls between two specific values

• Doing so, requires calculating the difference between the cdf
evaluated at both values

Pr(yi = 1|Xi ) = Pr(ε < τ1 − Xβ|Xi )− Pr(ε ≤ τ0 − Xβ|Xi ) (4)

Pr(yi = 1|Xi ) = F (τ1 − Xβ)− F (τ0 − Xβ) (5)

• Where F in Equation 5 is the cdf of the normal distribution
(Φ) for an ordered probit, or the cdf of the logistic distribution
(Λ) for an ordered logit
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Ordered Logit/Probit

• The previous steps can be generalized to any m category
dependent variable y

Pr(yi = 1|Xi ) = F (τm − Xβ)− F (τm−1 − Xβ) (6)

• When calculating Pr(yi = 1), the second term on the
right-hand side drops out, as:

F (τ0 − Xβ) = F (−∞− Xβ) = 0 (7)

• Additionally, when calculating the probability of the last
category (y = m), the first term on the right-hand side equals
1, as:

F (τm − Xβ) = F (∞− Xβ) = 1 (8)
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Ordered Logit/Probit

• Problem with proceeding under this estimation
• The four previous equations remain unidentified
• We have more parameters than equations (5 to 4)

• In order to estimate, we must arbitrarily set one parameter
equal to 0
• Our options are either τ1 = 0 or α = 0
• R prefers to estimate all cutpoints so we generally use α = 0
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Ordered Logit/Probit

• Once we set one parameter equal to 0 we can maximize the
likelihood function

• Must remember that maximization needs to occur for a value
that falls between two categories

L(β, τ |y ,X) =
M∏

m=1

∏
yi=m

Pr(yi = m|X, β, τ) (9)

=
M∏

m=1

∏
yi=m

[F (τm − Xβ)− F (tm−1 − Xβ)]
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Ordered Logit/Probit

• Taking the natural log gives us

ln L(β, τ |y ,X) =
M∑

m=1

∑
yi=m

ln[F (τm − Xβ)− F (tm−1 − Xβ)] (10)

• In essence, this is the same as taking the natural log for the
equation of each y value and then summing across all
equations
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Parallel Lines Assumption

• An core assumption in ordered logit/probit models that
unfortunately is often ignored.

• Essentially, the parallel lines assumption (sometimes called
proportional odds assumption) states that the relationship
between each independent variable and the dependent variable
should not change across categories
• Can use the Brant test to check if the assumption is violated

• R package of brant, with R command of
brant(ordered model object)

• R package of car, with R command of
poTest(ordered model object)

• Can then use clm framework (cumulative link function) to
only estimate those explanatory variables that do not violate
the PLA
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Estimating Ordered Logit/Probit in R

• Instead of the glm framework, we use an expansion of glm
with the package MASS, and the command polr()
(Proportional Odds Logistic Regression)
• Despite the name, polr can handle probit, and other ordinal

models by specifying method
• Default is logistic
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Estimating Ordered Logit/Probit in R

• Basic syntax:
• polr(formula, data, method, Hess, ...)
• method = c("logistic", "probit", "loglog",

"cloglog", "cauchit")
• Hess default is False; need to set to True to call summary

and/or vcov
• weights and subset options are also available, and function

as their use in glm
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A Note on Objects of Class Factor

• Categorical variables are often assigned as ‘factor’ class objects

• This allows for a text ’label’ at each level of the ordinal
variable

• lm, glm, and polr treat these in a dissimilar manner than
numeric class variables
• Functionally in estimation, create a series of binary indicators

for each level and provide a coefficient for each
• The lowest level of the factor will be omitted as the baseline

(to avoid perfect multicollinearity)
• Can change this with relevel(..., ref = ...)

• This may or may not be useful for you, but you need to
remain conscious of this and check object classes when
importing/managing data



Ordinal Models Estimation Interpretation

A Note on Objects of Class Factor

• For example (outcome is the importance of religion (1 to 4))

Factors Numeric

Abortion: Yes 2.139∗∗∗ Abortion 2.174∗∗∗

(0.119) (0.118)
Gender: Male −0.637∗∗∗ Gender −0.643∗∗∗

(0.080) (0.080)
Urban: Urban −0.147 Urban −0.167∗

(0.093) (0.092)
Education: Community college −0.061 Education 0.084∗∗∗

(0.117) (0.024)
Education: Graduate Degree −0.311∗∗

(0.146)
Education: High School Graduate 0.127

(0.120)
Education: Some High School 0.610∗∗∗

(0.146)
Education: Some post-secondary 0.206

(0.142)

Observations 2,231 2,231

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Estimating Ordered Logit/Probit in R

• Object class requirements:
• polr demands the outcome variable be of class ‘factor’
• You can bypass this by specifying as.factor(DV) if you so

desire, e.g. if your DV is numeric
• IVs can be numeric or factor, but factor class IVs will be

calculated as indicators, increasing the k and thus reducing df
as in the next example
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Example Output
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Estimating Ordered Logit/Probit in R

• Next step should always to be to check the Parallel Lines
Assumption
• brant(polr object)
• poTest(polr object)

• Significant results (p < 0.05) indicate that a coefficient
violates the PLA
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Example Output
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Estimating Ordered Logit/Probit in R

• As we can see, the covariates of degree and country violate
the PLA
• Original Model: polr(as.factor(poverty) ∼ religion +

degree + country + age + gender, data=wvs2, Hess =

TRUE)
• CLM Model: clm(as.factor(poverty) ∼ religion +

age + gender, nominal = ∼ degree + country,

data=wvs2)

• nominal = allows us to relegate those covariates that violate
the PLA to a nominal treatment, and are placed within the
threshold report
• nominal = ∼ IV1 + IV2 ...
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Example Output
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Interpretation of Coefficients

• Interpretation of ordered logit/probit coefficients is different
than regular logit/probit models
• In the regular model the interpretation is based on the change

in probability of y going to 1
• In the ordered models, interpretations are based on specific

values of the dependent variable (y = 1, y = 2, etc.)

• Therefore, calculation of marginal effects or predicted
probabilities must be estimated separately for each value of y
• When calculating predicted probabilities with margins, this is

to some degree automated
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Example Output Using Margins

• When compared to logit models, the margins command for
ordered models will produce a much larger matrix due to the
increased number of outcome categories
• This generally means that there will be a delay in R as each

level is calculated

• Even in a simple case, with 5 outcome categories and a single
binary explanatory variable, the margins results can be
somewhat confusing to interpret
• The variables in the following examples are:

• A three category measure of labor participation (not working,
part time, full time)

• An four category measure on the importance of religion(not
important, not very important, somewhat important, very
important)
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Example Output Using Margins
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Example Output Using Margins
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Predicted Probabilities

• Unlike the margins command in STATA which allows both
predicted probabilities and marginal effects, the margins

command in R has limited functionality

• The solution is a bit more intensive

• First, need to create a new data frame with the covariate
values desired

• Next, use the predict function with the type = "probs" to
calculate predicted probabilities

• Alternatively, one can use type = "class" to predict the
category (factor value) at different covariate values
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Predicted Probabilities

• This will look something like:
• polr object< −polr(as.factor(DV) X1 + X2 + X3

..., data=df, ...)
• PPdf < − data.frame(X1=rep(mean(df$X1),2),

X2=rep(mean(df$X2),2),
X3=c(1,2))

• The right side of the arrow is creating a data.frame with three
columns and two rows, where X1 and X2 are set to their
mean, and X3 is set to 1 and 2. You have to specify the
correct number of rows even where you are holding a value
constant – hence the use of the rep function.

• PPdf[, c("pred.prob")] < − predict(polr object,

newdata=PPdf, type="probs")
• PPdf
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Example Predicted Probabilities Outputs

• A three category measure of labor participation and a
five-category explanatory variable yield fifteen predicted
probabilities
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Predicted Probabilities

• The complexity of this scales exponentially

• For example, a four category outcome with three binary IVs
and one six category IV yields 192 predicted probabilities

• This is rarely useful nor interpretable
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Predicted Probabilities

• The complexity of this scales exponentially

• For example, a four category outcome with three binary IVs
and one six category IV yields 192 predicted probabilities

• This is rarely useful nor interpretable
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Example Predicted Probabilities Outputs

• A better approach with so many combinations is to only vary
the covariate you are interested in
• Reminder: set continuous variables to their mean and binary or

categorical variables to their median
• The values you set the covariate to need to make substantive

sense – no such thing as 1.4 urban where urban residency is
defined as a yes/no
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Example Output Using ‘Effects’ Package

• As with most analyses, graphical illustrations are often
preferable to tables, especially where not easily interpretable
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Example Output Using ‘Effects’ Package
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Example Output Using GGPlot
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