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Survival/Duration/Event History Data

• Observations represent the occurrence of a particular event
over a period of time

• Fundamental goal of analysis is to determine survival time
or‘how long’ it takes for some event to occur

• Initial analysis of duration data involved fitting OLS regression
lines to data
• Underlying theory is that time is continuous
• Problem is that some events have not occurred at end of

observation (i.e. censored)
• How does one model censoring?
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Example of Duration Data
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Solutions for Censored Data

• Treat censored observation as equivalent to last observed data
point

• Eliminate censored observation(s)
• This solution only works if the factors which contribute to the

censoring (i.e. extended life beyond the sample) are unrelated
to the factors promoting an event’s occurrence

• If factors are related, than elimination of censored observations
leads to biased estimates

• Create a binary indicator variable (coded ‘1’ if event occurs
and ‘0’ otherwise)
• Problem is that the dummy variable cannot capture the

variation in duration time, which is precisely what we try to
model

• New indicator variable does not bias estimates, but leads to
inefficiency in the model
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Logic of Survival/Duration/Event History Models

• Underlying premise is that the survival/duration/
time-until-event of some process is modeled

• Technique originated from biostatistics to predict how long an
individual will live after given specific medical treatments

• Overall approach involves modeling three related concepts

1. Survivor function
2. Occurrence of an event
3. Hazard rate
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Survivor Function

• Expresses the probability that the duration (T) has survived
beyond (or not ended by) a specific time (t)

• S(t) = Pr (T > t)

• This helps determine which observations exist past the
observed sample (i.e. those that are censored)
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Occurrence of an Event

• Models the probability that an event will occur at any given
point in time (t)

f (t) = lim
∆t→0

Pr(t + ∆t > T ≥ t)

∆t

• Where f(t) represents a probability density function of the
duration
• May be interpreted as the instantaneous probability of the

occurrence of an event (T) at a specific time (t)



Intro Basics Cox Model Parametric Models

Hazard Rate

• This reflects the rate at which a duration (or episode) ends in
the interval [t, t + ∆t]
• Given that the duration has not terminated prior to the

beginning of this interval

h(t) = lim
∆t→0

Pr(t + ∆t > T ≥ t|T ≥ t)

∆t

• Possible interpretation of the hazard rate:
• The risk an object occurs at any given moment in time,

provided that the even has not yet occurred
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Making the Connections

• Relation of Survivor Function, Occurrence of Event, and
Hazard Rate
• Occurrence of Event [f (t)] = Hazard Rate [h(t)] * Survivor

Function [S(t)]
• f (t) = h(t) ∗ S(t)

• We can rewrite to the following equalities:

• h(t) =
f (t)

S(t)

• S(t) =
f (t)

h(t)
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Making the Connections

• Since these concepts are related mathematically, we can:

1. Make assumptions about one
2. Estimate the effects of the second (based on observed data)
3. Derive estimates from the third aspect

• The hazard rate has desirable properties that make it
amenable to assumptions of its probability distribution
• We can then use this information, and combine the effects of

the probability of an event occurring (based on observed data)
to determine likelihood of observations existing beyond the
sample (i.e. censored observations)
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Assumptions about the Hazard Rate

• Assumptions most often based on the rate’s dependency, or
relationship, to time
• Is the rate constant?
• Does it increase or decrease?

• If rate is constant (i.e. time invariant)
• Can estimate using an exponential distribution
• The hazard rate at any given time point is equal to the hazard

rate at any other point in time: h(t) = h
• Graphical depiction produces a flat line
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Assumptions about the Hazard Rate

• If rate is time dependent
• Need to determine whether event is affected by discrete time

(i.e. finite categories) or continuous time

• Discrete Time
• Goal of these models is to use the statistical model to derive

estimates of the underlying hazard probability of a unit
experiencing an event

• Whether or not event is experienced is determined by the
observed dependent variable

• Since an event can occur only at discrete time intervals, we
can assume that the probability of event T occurring at time t
is also observable
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Modeling Discrete Time

• λ(t) = Pr(T = t|T ≥ t)

• Where λ(t) = the discrete time hazard function

• λ(t) can be interpreted as the probability that a unit
experiences an event at time t, given the event has yet to be
experienced

• This is used instead of h(t), which is kept for the continuous
time hazard function
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Modeling Discrete Time

• Previous discussion exclusively focused on modeling the
hazard function

• Most analysts want to know how specific independent
variables affect the hazard rate
• λ(t) = Pr(T = t|t ≥ t;α, βX)

• where α represents a baseline probability (when covariates
equal zero) and βX represents matrix of independent variables
and their parameters

• Cox (1972) demonstrates that the λ probabilities can be
parameterized through the logistic distribution

λ(t) =
1

1 + exp−[α+βX]
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Modeling Discrete Time

• Estimating this equation requires a logistic transformation

ln
λ(t)

1− λ(t)
= α + βX

• This model can be estimated with a variation of the logit
model, called the proportional hazards model
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Cox Proportional Hazards Model

• Logic behind the proportional hazards model

λ(t) =
probability of failing between times t and t + ∆t

(∆t)(probability of failing after time t)

• coxph() in R
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Cox Proportional Hazards Model

• R syntax for estimating Cox PH Model:

First create a Surv() object: you can think of this as your
outcome variable
• surv object< −Surv(time, time2, event, type ...)

• time: for our purposes, the time variable. General
specification calls for the time argument as the starting time
where you have interval data

• time2: the ending time where you have interval data –
optional, and not used for our purposes. Contingent on data
form, requires unique formatting – see documentation.

• event: Generally, the status variable where 0=alive and
1=death. For different forms of censored data, see
documentations for specifics.

• type: Specification for the type of data censoring

Then Run the Cox PH model
• coxph(surv object ∼ IV1 + IV2 + . . . , data=your data)
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Cox Proportional Hazards Model
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Cox Proportional Hazards Model

• coxph()
• Many options, but important ones may be robust, id,
cluster

• robust: should robust variance be used
• id: specification for an ID variable – e.g. if there are multiple

rows per patient
• cluster: group variable for ‘cluster’ robust standard error

calculation – e.g. calculating the likelihood of the onset of war
across different regions

• Using the ‘rotterdam’ data from the survival package

• Commands:

> rott< − survival::rotterdam
> status< − Surv(rott$dtime, rott$death)
> cox m1< −coxph(status ∼ meno + grade + chemo,

data=rott)
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Cox Proportional Hazards Model

• Useful, but summary(coxph object) contains more information
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Cox Proportional Hazards Model

• The exp(coef) column contains the hazard ratios. If above
1, this means the IV has a positive impact on the likelihood of
your outcome; if below 1 it has a negative effect.

• Think of this as increases or decreasing the likelihood of the
outcome, as compared to – traditional use has death as the
outcome.
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Cox Proportional Hazards Model

• These effects are multiplicative and calculated at the means of
the other variables. Thus, the resultant impact of each
covariate on the hazard rate is multiplicative where the
covariates are ordinal or continuous.

• For example, age is a continuous variable with a hazard rate
of 1.011, which means that each year of age increase results
in an increased chance of death of 1.1%



Intro Basics Cox Model Parametric Models

Cox Proportional Hazards Model: Graphs

• Multiple ways to graphs these models, but ggsurvplot from
the survminer package is likely the simplest
• Creates customizable and visually pleasing Kaplan-Meier plots

• ggsurvplot(survfit(coxph object), data=df,

conf.int = T, legend.labs=...)

• Can use the process from predicted probabilities to easier
illustrate relationships in your graph

• Only difference in the ggsurvplot() command is the
requirement to specify the new data.frame

• ggsurvplot(survfit(coxph object,

newdata=new data), data=new data, conf.int = T,

legend.labs=...
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Cox Proportional Hazards Model: Kaplan-Meier Plots

Figure: Calculations made at means of all variables

Line 35 in the R tutorial
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Cox Proportional Hazards Model: Kaplan-Meier Plots

Figure: Calculations made on Use of Chemotherapy

Line 37-43 in the R tutorial
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Cox Proportional Hazards Model: Kaplan-Meier Plots

Figure: Calculations made on Use of Chemotherapy and Patient Age

Line 45-51 in the R tutorial
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Cox Proportional Hazards Model: Kaplan-Meier Plots

Figure: Calculations made on Tumor Size and Use of Chemotherapy

Line 53-60 in the R tutorial
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Cox Model Assumptions

1. Non-Informative Censoring — mechanisms responsible for
censoring observations unrelated to the likelihood of an event
occurring

2. Proportional Hazards Assumption — if an explanatory variable
is altered the new hazard rate will be proportional to the old
one
• This is easy to test for in R. Use the command
cox.zph(coxph object) in post estimation.

• Significant results indicate a covariate is time dependent

• You can also use ggcoxzph(), ggcoxdiagnostics(),
ggcoxfunctional() to visually examine this

• ggcoxzph(): Graphical test of proportional hazards
• ggcoxdiagnostics(): Diagnostic graphs for goodness of fit
• ggcoxfunctional(): Graphs of continuous IV against

residuals of null cox proportional hazards model.
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Exponential and Weibull Models

• Limitation of the Cox regression
• Estimates baseline survival function without a theoretical

justification for the statistical distribution
• Offers no assumptions about the relation of the hazard rate to

time

• Exponential Models
• Assumes that the hazard rate remains constant
• Therefore, ‘failures’ assumed to occur randomly

• Weibull Regressions
• Assumes that the hazard rate either increases or decreases over

time
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Exponential and Weibull Models
• These fully parameterized models make an assumption

regarding the distributional form of the hazard rate
• The exponential is a special case of the Weibull with scale

parameter 1
• There are a variety of other parameterizations of these models

that may be more useful in specific circumstances, as opposed
to the semi-parameterized Cox PH model
• survreg() includes gaussian, logistic, lognormal and

log-logistic
• phreg from the eha package has further options

(a) Weibull (b) Exponential
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Exponential and Weibull Models

• How do we know which model to use?
• Need to examine and identify trends in the baseline hazard

• Kaplan-Meier survival estimate graph
• Based on following equation

S(t) =
t∏

j=t0

(nj − dj)

nj

• Where nj = # of observations that have not failed and are
not censored, and dj = # failures occurring at time t
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Exponential and Weibull Models

• Limitations of Kaplan-Meier graphs
• Unadjusted graphs are somewhat misleading because the

hazard rate will always fluctuate over time
• To correct for this, we graph the natural log of survival time

lnS(t) versus time
• If line appears relatively straight, then the Exponential Model

is more appropriate
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Exponential and Weibull Models
• R syntax for Kaplan-Meier log versus time graph:

> sfit object< −survfit(cox m1)
• survfit is used to create Kaplan-Meier plots. This is saving

your Cox PH model in a format that we can use.
> sum object< −summary(sfit object, times = rott$dtime)

• Here, we assign the summary function to the survfit object
to extract the information we need below.

> formula < −log(surv) ∼ (time)
• This isn’t actually performing a function – it is saving the

syntax of what you’re asking R to do
> subset < − as.data.frame(sum object[c(”time”, ”surv”)])

• Taking a subset of the summary object, the columns time and
surv which correspond to the total time elapsed and the
survival time

> fit< −lm(formula, subset)
• Using linear regression to find the best-fit line between the

quantities of interest
> plot(formula, subset)

• Makes a simple plot based on the previous information
> abline(fit)

• Fits the best-fit line for comparison
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Log Versus Time Example
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Exponential and Weibull Models

• One last adjustment needed to be confident that the Weibull
model is not more appropriate

• Weibull distribution might appear curvilinear in the log versus
time plot, but will be linear in a loglog plot ln[− lnS(t)]

• Exponential distribution will appear linear in both plots, and
have a slope equal to 1 in the loglog plot
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Exponential and Weibull Models

• R syntax for loglog plot:

> sfit object< −survfit(coxph object)
> sum object< −summary(sfit object, times = rott$dtime)
> formula < − log(-log(surv)) log(time)

• Notice the difference from the former code

> subset < − as.data.frame(sum object[c(”time”, ”surv”)])
> plot(formula, subset)
> abline(-10, 1)

• Fitting the linear line for comparison – the -10 is the intercept,
and the 1 is the slope. You’ll need to adjust the intercept for
your own purposes. We can’t simply fit a linear best-fit line
given the form of the data provided.

• All this code is in the R tutorial (110-130)
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Log-Log Example
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Exponential and Weibull Models

• Estimation of Exponential or Weibull Models
• R syntax:

• survreg(formula, data, subset, na.action, dist,

robust, ...)
• Key option:

• dist="weibull" when estimating Weibull model
• dist="exponential" when estimating Exponential model

Example survreg(Surv object ∼ IV1 + IV2 + ..., data=df,

dist=‘‘weibull")
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Exponential Model Example
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Weibull Model Example
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Weibull Model Example

• Note: the scale parameter in the Weibull provides information
about the hazard rate
• If scale ∼= 1 then Weibull equals Exponential model

• Remember exponential distribution is a special case of the
Weibull distribution where the scale parameter = 1

• If scale > 1 then hazard increases over time
• If scale < 1 then hazard decreases over time
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Weibull Model Example

• Note: survreg() fits accelerated failure models, not
proportional hazards models.
• The coefficients are logarithms of ratios of survival times

• Positive coefficient means longer survival
• Negative coefficient means shorter survival
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Comparing Models

• Cox Proportional Hazards Model
• Less parameters to estimate
• Easier, more parsimonious model
• If hazard rate is related to time, this model produces biased

estimates

• Exponential or Weibull Model
• More parameters to estimate
• Models more susceptible to specification error
• If hazard rate is not related to time, these models produce

biased estimates

• Kaplan-Meier Graphs
• Probably the best way to determine proper specification

(unless there is a theoretical reason)
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Comparing Models

• Can use the check.dist() call from the eha package to
visually examine the difference between the semi- and fully
parameterized models
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