Nested Data Structures

Michael P. Fix Georgia State University mfix@gsu.edu

Week 11

Multilevel/Nested Data

- Most frequently contain observations that are nested within larger spatial categories or groupings
 - Examples: individuals within states, households within counties
- Also contain observations that are nested temporally
 - Example: Annual gross domestic product
- May even contain observations that are nested in larger spatial groupings, across time
 - Example: individual responses within surveys within years

Dealing with Multilevel/Nested Data

- Disaggregate Group Data to Individual Level
 - Example: Individual data nested with in states, include state level variables at individual level with same values for all individuals in a given state
- Problem:
 - All unmodeled contextual information (usually macro effects) ends up in the error term
 - Individuals within same macro group then have correlated errors (violates OLS assumption)
 - Can we get around this? Is there a way to account for this unmodeled contextual information?

Solution 1: Fixed Effects

- Essentially, this approach adds an additional dummy variable for each macro-level grouping to account for the contextual variation
- This prevents to correlated error issue, but does so at a cost
- Model estimates will be inefficient as N-1 new independent variables are added to the model, burning N-1 degrees of freedom (where N is the number of macro-level groupings)

Solution 2: Random Effects

- Like fixed effects, random effects allows the estimation of different intercepts for each macro-level group
- It avoids the inefficiency problem by assuming these intercepts are randomly drawn for a given (usually normal) distribution
- Estimates are likely to be biased though

Solution 3: Clustering

- Clustering essentially is a statistical "fix" of the problem by allowing a compound error term that accounts for the macro-level information
- This is a variation on the commonly used Huber-White robust standard errors
- Like random effects models it allows off diagonial elements in teh variance covariance matrix to be non-0
- See Primo, David M, Matthew L. Jacobsmeier, and Jeffrey Milyo. 2007. "Estimating the Impact of State Policies and Institutions with Mixed-Level Data" *State Politics and Policy Quarterly* 7(Winter): 446–459.

Solution 4: Multilevel Modeling

- Also known as Hierarchical Linear Modeling or Mixed Effects Modeling
- Heavily used in educational research to look at students nested in classrooms, nested within schools, nested within districts, etc
- Goal is to predict influences on a dependent variable using independent variables from several contexts (individual and macro)

Multilevel Modeling — Basic Structure

• Consider the following equations:

• Level 1:
$$y_{ij} = \beta_{0j} + \beta_{1j} x_{ij} + \epsilon_{ij}$$

Level 2:

•
$$\beta_{0j} = \gamma_{00} + \eta_{0j}$$

- Where:
 - i = individuals
 - j = groups

Multilevel Modeling Considerations

- How many levels are in the data?
 - Most social science contains only 2 or 3
- How many predictors for each level are needed?
 - Model becomes increasingly more complex as these numbers increase (especially for macro-level predictors)
 - Are any cross-level interactions hypothesized
- Which parts of the model will include random effects?
- What structural form will you use?
 - Varying intercepts only
 - Varying slopes only
 - Varying intercepts and slopes

Varying Intercepts vs Slope and Intercept

Varying Intercepts and Slopes

- Varying intercept and slope adds an additional level of modeling complexity
- Our level 1 equation remains unchanged:

•
$$y_{ij} = \beta_{0j} + \beta_{1j} x_{ij} + \epsilon_{ij}$$

 However, our level 2 model now accounts for the fact that we are allowing both the intercept and the slope to vary at level 2:

•
$$\beta_{0j} = \gamma_{00} + \eta_{0j}$$

$$\beta_{1j} = \gamma_{10} + \eta_{1j}$$

Multilevel Modeling Considerations

• Number of Groups

- Some argue that a minimum number of groups is needed for multilevel modeling
- However, even with a small number of groups, a multilevel regression will simply reduce to a classical regression
- Therefore, the number of groups is a limitation, only in that it estimation of between-group variation will be limited
- Number of Observations per Group
 - Another issue that some scholars present as an issue even though none exists
 - With small numbers of observations in some groups, estimates of the α parameters for those groups will be imprecise
 - Also, if there is significant imbalance there can be issues with random effects estimates

Estimation in Stata

- The basic syntax for estimating a mixed effects linear regression in Stata is: mixed depvar fe_equation [|| re_equation]
 [|| re_equation ...] [,options]
- where:
 - fe_equation syntax is: [indepvars] [if] [in] [weight] [, fe_options]
 - and
 - re_equation syntax is: levelvar: [varlist] [, re_options]

Estimation in Stata: Example

. mixed cites readpca nytSalience MOWmq MinWin precedentAlteration age || court: r > eadpca

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -305736.02 Iteration 1: log likelihood = -305736.02

Computing standard errors:

Mixed-effects ML regression	Number of obs		86,517
Group variable: court	Number of gro	oups =	52
	Obs per group:		
		min =	1,663
		avg =	1,663.8
		max =	1,664
	Wald chi2(6)	-	287.32
Log likelihood = -305736.02	Prob > chi2	=	0.0000

cites	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
readpca	.0355832	.0108527	3.28	0.001	.0143123	.0568542
nytSalience	.6068268	.0808438	7.51	0.000	.4483759	.7652776
MOWing	.0249962	.0135759	1.84	0.066	001612	.0516045
MinWin	.570886	.0728748	7.83	0.000	.4280539	.713718
precedentAlte~n	1.600817	.1969919	8.13	0.000	1.21472	1.986914
age	.0430976	.0052521	8.21	0.000	.0328036	.0533915
_cons	2450255	.1392622	-1.76	0.079	5179744	.0279234

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
<pre>court: Independent var(readpca) var(_cons)</pre>	.0027766 .2340195	.0010918 .0542114	.0012847 .148617	.0060008
var(Residual)	68.59489	.3299952	67.95115	69.24472
LR test vs. linear model: chi2	(2) = 223.67		Prob > chi	2 = 0.0000

LR test vs. linear model: chi2(2) = 223.67

Estimation in Stata: Beyond Linear Regression

- Moving from a multilevel linear regression to more complex multilevel models is quite straightforward in Stata
 - However, you will want to ensure that you understand what you are doing. Simply because the code runs, doesn't mean something is properly modeled
- Examples:
 - Multilevel logit: melogit
 - Multilevel probit: meprobit
 - Multilevel poisson: mepoisson
 - Multilevel negative binomial: menbreg
 - Multilevel ordered logit: meologit
 - Multilevel ordered probit: meoprobit