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Most frequently contain observations that are nested within
larger spatial categories or groupings

Examples: individuals within states, households within counties
Also contain observations that are nested temporally

Example: Annual gross domestic product
May even contain observations that are nested in larger
spatial groupings, across time

Example: individual responses within surveys within years



Disaggregate Group Data to Individual Level
Example: Individual data nested with in states, include state
level variables at individual level with same values for all
individuals in a given state

Problem:

All unmodeled contextual information (usually macro effects)
ends up in the error term

Individuals within same macro group then have correlated
errors (violates OLS assumption)

Can we get around this? Is there a way to account for this
unmodeled contextual information?



Essentially, this approach adds an additional dummy variable
for each macro-level grouping to account for the contextual
variation

This prevents to correlated error issue, but does so at a cost
Model estimates will be inefficient as N-1 new independent
variables are added to the model, burning N-1 degrees of
freedom (where N is the number of macro-level groupings)



Like fixed effects, random effects allows the estimation of
different intercepts for each macro-level group

It avoids the inefficiency problem by assuming these intercepts
are randomly drawn for a given (usually normal) distribution

Estimates are likely to be biased though



Clustering essentially is a statistical "“fix" of the problem by
allowing a compound error term that accounts for the
macro-level information

This is a variation on the commonly used Huber-White robust
standard errors

Like random effects models it allows off diagonial elements in
teh variance covariance matrix to be non-0

See Primo, David M, Matthew L. Jacobsmeier, and Jeffrey
Milyo. 2007. “Estimating the Impact of State Policies and
Institutions with Mixed-Level Data” State Politics and Policy
Quarterly 7(Winter): 446-459.



Also known as Hierarchical Linear Modeling or Mixed Effects
Modeling

Heavily used in educational research to look at students
nested in classrooms, nested within schools, nested within
districts, etc

Goal is to predict influences on a dependent variable using
independent variables from several contexts (individual and
macro)



Multilevel Modeling — Basic Structure

Consider the following equations:
Level 1: Yij = ,Boj + ﬂle,'j + €jj
Level 2:

* Boj = 700 + 1oj
Where:

® | = individuals

® j = groups



How many levels are in the data?
Most social science contains only 2 or 3
How many predictors for each level are needed?

Model becomes increasingly more complex as these numbers
increase (especially for macro-level predictors)
Are any cross-level interactions hypothesized

Which parts of the model will include random effects?
What structural form will you use?

Varying intercepts only

Varying slopes only

Varying intercepts and slopes



Varying Intercepts vs Slope and Intercept
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Varying intercept and slope adds an additional level of
modeling complexity

Our level 1 equation remains unchanged:
Yij = Boj + Prjxij + €
However, our level 2 model now accounts for the fact that we

are allowing both the intercept and the slope to vary at level
2:

Boj = Yoo + 1oj
B1j = 710 + N1



Number of Groups
Some argue that a minimum number of groups is needed for
multilevel modeling
However, even with a small number of groups, a multilevel
regression will simply reduce to a classical regression
Therefore, the number of groups is a limitation, only in that it
estimation of between-group variation will be limited

Number of Observations per Group
Another issue that some scholars present as an issue even
though none exists
With small numbers of observations in some groups, estimates
of the o parameters for those groups will be imprecise
Also, if there is significant imbalance there can be issues with
random effects estimates



The basic syntax for estimating a mixed effects linear
regression in Stata is:
mixed depvar fe_equation [|| re_equation]
[I| re_equation ...] [,options]
where:
fe_equation syntax is:
[indepvars] [if] [in] [weight] [, fe_options]
and
re_equation syntax is:
levelvar: [varlist] [, re_options]



Estimation in Stata: Example

. mixed cites readpca nytSalience MOWmq MinWin precedentAlteration age || court: r
> eadpca
Performing EM optimization:
Performing gradient-based optimization:
Tteration @:  log likelihood = -305736.02
Tteration 1:  log likelihood = -305736.02
Computing standard errors:
Mixed-effects ML regression Number of obs 86,517
Group variable: court Number of groups = 52
0bs per group:
min 1,663
avg 1,663.8
max = 1,664
Wald chi2(6) = 287.32
Log likelihood = -305736.02 Prob > chi2 = 0.0000
cites Coef. std. Err. 2 P|z| [95% Conf. Interval
readpca 0355832 .0108527 3.28  o0.001 0143123 .0568542
nytsalience 6068268  .0808438 7.51  0.000 4483759 .7652776
MoWmg 0249962 .0135759 1.84  0.066 -.001612  .0516045
MinWin 570886  .0728748 7.83  0.000 .4280539 713718
precedentAlte~n 1.600817  .1969919 8.13  0.000 1.21472 1.986914
age 0430976 .0052521 8.21  0.000 0328036 .0533915
_cons | -.2450255  .1392622  -1.76 0.079  -.5179744  .0279234
Random-effects Parameters Estimate  Std. Err. [95% Conf. Interval
court: Independent
var(readpca) 0027766 .0010918 0012847 .0060008
var(_cons) .2340195 0542114 148617 .3684985
var(Residual) 68.59489  .3209952 67.95115  69.24472
Prob > chi2 = 0.0000

LR test vs. linear model: chi2(2) = 223.67



Moving from a multilevel linear regression to more complex
multilevel models is quite straightforward in Stata
However, you will want to ensure that you understand what
you are doing. Simply because the code runs, doesn’t mean
something is properly modeled
Examples:
Multilevel logit: melogit
Multilevel probit: meprobit
Multilevel poisson: mepoisson
Multilevel negative binomial: menbreg
Multilevel ordered logit: meologit
Multilevel ordered probit: meoprobit



