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Multilevel/Nested Data

• Most frequently contain observations that are nested within
larger spatial categories or groupings

• Examples: individuals within states, households within counties

• Also contain observations that are nested temporally
• Example: Annual gross domestic product

• May even contain observations that are nested in larger
spatial groupings, across time

• Example: individual responses within surveys within years



Dealing with Multilevel/Nested Data

• Disaggregate Group Data to Individual Level
• Example: Individual data nested with in states, include state

level variables at individual level with same values for all
individuals in a given state

• Problem:
• All unmodeled contextual information (usually macro effects)

ends up in the error term
• Individuals within same macro group then have correlated

errors (violates OLS assumption)
• Can we get around this? Is there a way to account for this

unmodeled contextual information?



Solution 1: Fixed Effects

• Essentially, this approach adds an additional dummy variable
for each macro-level grouping to account for the contextual
variation

• This prevents to correlated error issue, but does so at a cost

• Model estimates will be inefficient as N-1 new independent
variables are added to the model, burning N-1 degrees of
freedom (where N is the number of macro-level groupings)



Solution 2: Random Effects

• Like fixed effects, random effects allows the estimation of
different intercepts for each macro-level group

• It avoids the inefficiency problem by assuming these intercepts
are randomly drawn for a given (usually normal) distribution

• Estimates are likely to be biased though



Solution 3: Clustering

• Clustering essentially is a statistical “fix” of the problem by
allowing a compound error term that accounts for the
macro-level information

• This is a variation on the commonly used Huber-White robust
standard errors

• Like random effects models it allows off diagonial elements in
teh variance covariance matrix to be non-0

• See Primo, David M, Matthew L. Jacobsmeier, and Jeffrey
Milyo. 2007. “Estimating the Impact of State Policies and
Institutions with Mixed-Level Data” State Politics and Policy
Quarterly 7(Winter): 446–459.



Solution 4: Multilevel Modeling

• Also known as Hierarchical Linear Modeling or Mixed Effects
Modeling

• Heavily used in educational research to look at students
nested in classrooms, nested within schools, nested within
districts, etc

• Goal is to predict influences on a dependent variable using
independent variables from several contexts (individual and
macro)



Multilevel Modeling — Basic Structure

• Consider the following equations:

• Level 1: yij = β0j + β1jxij + εij
• Level 2:

• β0j = γ00 + η0j
• Where:

• i = individuals
• j = groups



Multilevel Modeling Considerations

• How many levels are in the data?
• Most social science contains only 2 or 3

• How many predictors for each level are needed?
• Model becomes increasingly more complex as these numbers

increase (especially for macro-level predictors)
• Are any cross-level interactions hypothesized

• Which parts of the model will include random effects?
• What structural form will you use?

• Varying intercepts only
• Varying slopes only
• Varying intercepts and slopes



Varying Intercepts vs Slope and Intercept



Varying Intercepts and Slopes

• Varying intercept and slope adds an additional level of
modeling complexity

• Our level 1 equation remains unchanged:

• yij = β0j + β1jxij + εij
• However, our level 2 model now accounts for the fact that we

are allowing both the intercept and the slope to vary at level
2:

• β0j = γ00 + η0j
• β1j = γ10 + η1j



Multilevel Modeling Considerations

• Number of Groups
• Some argue that a minimum number of groups is needed for

multilevel modeling
• However, even with a small number of groups, a multilevel

regression will simply reduce to a classical regression
• Therefore, the number of groups is a limitation, only in that it

estimation of between-group variation will be limited

• Number of Observations per Group
• Another issue that some scholars present as an issue even

though none exists
• With small numbers of observations in some groups, estimates

of the α parameters for those groups will be imprecise
• Also, if there is significant imbalance there can be issues with

random effects estimates



Estimation in Stata

• The basic syntax for estimating a mixed effects linear
regression in Stata is:
mixed depvar fe_equation [|| re_equation]

[|| re_equation ...] [,options]

• where:
• fe_equation syntax is:

[indepvars] [if] [in] [weight] [, fe_options]
• and
• re_equation syntax is:
levelvar: [varlist] [, re_options]



Estimation in Stata: Example



Estimation in Stata: Beyond Linear Regression

• Moving from a multilevel linear regression to more complex
multilevel models is quite straightforward in Stata

• However, you will want to ensure that you understand what
you are doing. Simply because the code runs, doesn’t mean
something is properly modeled

• Examples:
• Multilevel logit: melogit
• Multilevel probit: meprobit
• Multilevel poisson: mepoisson
• Multilevel negative binomial: menbreg
• Multilevel ordered logit: meologit
• Multilevel ordered probit: meoprobit


