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Intro Assumptions Implementation

The Classic Regression Equation

• Assume the following equation to be true for the population:

Yi = β1 + β2X2i + . . .+ βkXki + εi (1)

• Which we can rewrite as a series of equations:

Y1 = β1 + β2X21 + β3X31 + . . .+ βkXk1 + ε1

Y2 = β1 + β2X22 + β3X32 + . . .+ βkXk2 + ε2

Yn = β1 + β2X2n + β3X3n + . . .+ βkXkn + εn

(2)
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The Classic Regression Equation

• Looking at equation [2], we can see that really all we have
here is a matrix:


Y1

Y2

. . .
Yn

 =


1 X21 X31 . . . Xk1

1 X22 X32 . . . Xk2

. . . . . . . . . . . . . . .
1 X2n X3n . . . Xkn



β1
β2
. . .
βn



ε1
ε2
. . .
εn

 (3)

• Therefore, with no alterative in meaning, we can rewrite
equation [1] with the following notation:

y = Xβ + ε (4)
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Assumptions of the CLRM

1. Linearity
• The CLRM as specified in the form

Yi = β1 + β2X2i + . . .+ βkXki + εi specifies a linear
relationship between y and x1, x2, . . . , xk .

2. Full Rank (No Perfect Multicollinearity)
• X is an n x k matrix of rank K
• This means that all columns in X are linearly independent and

there are at least K observations
• Thus, there are no exact linear relationships
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Assumptions of the CLRM

3. E [εi |X] = 0

• This assumption implies that the disturbance term should
have a conditional expected value of 0 at every observation.

• For the full set of observations, we can write this as:

E [ε|X] =


E [ε1|X]
E [ε2|X]

...
E [εn|X]

 = 0 (5)

• The assumption in equation [5] is essential, as it implies that:

E [y|X] = Xβ (6)
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Assumptions of the CLRM

4. Spherical Disturbances (Homoscedasticity and
Nonautocorrelation)

• Var[εi |X] = σ2, for all i = 1, . . . , n,

• and

• Cov[εi , εj |X] = 0, for all i 6= j

• State that the disturbance terms in the CLRM possess
consistant variance and that they are uncorrelated across
observations
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Assumptions of the CLRM

• Additionally, these assumptions imply that:

E [εε′|X] =


E [ε1ε1|X] E [ε1ε2|X] . . . E [ε1εn|X]
E [ε2ε1|X] E [ε2ε2|X] . . . E [ε2εn|X]

...
...

...
...

E [εnε1|X] E [εnε2|X] . . . E [εnεn|X]



=


σ2 0 . . . 0
0 σ2 . . . 0

...
0 0 . . . σ2


• Which we neatly summarize as:

E [εε′|X] = σ2I (7)
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Assumptions of the CLRM

5. Nonstochastic Regressors

• This assumption simply holds that all values in the matrix X
are fixed

• In practice, this assumption does not match the reality of
social science data where many of our independent variables
of theoretical interest are random

• Thus our assumption is more about the data generating
process that produces xi as being fixed
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Assumptions of the CLRM

6. Normality

• Here we simply add to the list of assumptions about the
disturbances by assuming they are normally distributed

• Formally, we state:

ε|X ∼ N[0, σ2I] (8)
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Implementation

• Base Packages:
• glm or lm

• Generalized linear models, or linear model

• Primary Packages:
• lmtest

• Tests and Diagnostics for OLS

• sandwich
• Robust standard errors
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Implementation: GLM Syntax

• GLM Implementation
• glm(formula, family = gaussian, data, weights,

subset, na.action, start = NULL, etastart,

mustart, offset, control = list(...), model =

TRUE, method = "glm.fit", x = FALSE, y = TRUE,

singular.ok = TRUE, contrasts = NULL, ...)

• Main Components:
• formula: Y ∼ X1 + X2 + X3 . . .
• family: ‘gaussian’ for linear regression
• data: call to your dataframe, list, or environment
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Implementation: GLM Implementation

• mRate < − glm(Murder ∼ Population + Income +

Illiteracy, family = gaussian, data = state)

• mRate: glm object

• Murder: Outcome Variable

• Population, Income, Illiteracy: Independent Variables

• state: Data Frame or coercable object

• summary(mRate)

Note: state comes from the datasets package built into R.
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Implementation: GM Assumptions

1. Linearity in the relationship under study

2. Error term is independently and identically distributed
normally about 0 with standard deviation of σ2

3. No perfect multicollinearity between independent variables

4. Spherical errors (υi neither correlated with the independent
variables nor one another)
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Implementation: GM Assumptions

1. Linearity in the relationship under study

• This is generally going to be a theoretical assumption made in
model selection
• Can use a version of scatterplots to check

• qqnorm(residuals(g/lm object))
• qqline(residuals(g/lm object))
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Implementation: GM Assumptions
1. Linearity in the relationship under study

• qqnorm(residuals(g/lm object))
• qqline(residuals(g/lm object))

Figure: Sample Q-Q Plot
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Implementation: GM Assumptions
2. Error term is independently and identically distributed

normally about 0 with standard deviation of σ2

• hist(mRate$residuals)

• sd(mRate$residuals)

Figure: Distribution of Residuals
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Implementation: GM Assumptions

3. No perfect multicollinearity between independent variables

• Three ways - correlations, tolerance, variable inflation factor

• Correlation
• cor.test(IV1, IV2, method = c("pearson",

"kendall", "spearman"), exact = NULL, conf.level =

0.95, continuity = FALSE, use = "complete.obs")
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Implementation: GM Assumptions

3. No perfect multicollinearity between independent variables
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• Correlation
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Implementation: GM Assumptions

3. No perfect multicollinearity between independent variables

• Three ways - correlations, tolerance, variable inflation factor
• Tolerance

• object=(1-(model$deviance/model$null.deviance))
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Implementation: GM Assumptions

3. No perfect multicollinearity between independent variables

• Three ways - correlations, tolerance, variable inflation factor
• VIF

• vif(model)

• Any IV with a vif greater than 10 needs to be addressed;
greater than 5 indicates potential issues
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Implementation: GM Assumptions

4. Spherical errors (υi neither correlated with the independent
variables nor one another)

• Heteroskedasticity: Breusch-Pagan Test
• bptest(model)
• coeftest(model, vcov = vcovHC(model, "HC1"))

• can use sandwich and other SE calculation variants: "HC0",
"HC1", "HC2", "HC3", "arellano", etc.

• Auto/serial correlation: Durbin-Watson Test
• dwtest(DV ∼ IV1 + IV2 + IV3 ...)

• Significant results indicate the existence of heteroskedastic
errors or serial correlation respectively.
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